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Abstract—The renewable power has been widely used in modern cloud data centers, which also produce large electricity bills and the
negative impacts on environments. However, frequent fluctuation and intermittency of renewable power often cause the challenges in
terms of the stability of both electricity grid and data centers, as well as decreasing the utilization of renewable power. Existing
schemes fail to alleviate the renewable power fluctuation, which is caused by the essential properties of renewable power. In order to
address this problem, we propose an efficient and easy-to-use smooth renewable power-aware scheme, called Smoother, which
consists of Flexible Smoothing (FS) and Active Delay (AD). First, in order to smooth the fluctuation of renewable power, FS carries out
the optimized charge/discharge operation via computing the minimum variance of the renewable power that is supplied to data centers
per interval. Second, AD improves the utilization of renewable power via actively adjusting the execution time of deferrable workloads.
Extensive experimental results via examining the traces of real-world data centers demonstrate that Smoother significantly reduces the
negative impact of renewable power fluctuations on data centers and improves the utilization of renewable power by 250.88% on
average. We have released the source codes for public use.
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1 INTRODUCTION

IN cloud environment, large electricity bills have become
almost unaffordable with the rapid growth of compu-

tation capability and the scale of cloud data centers [1].
In the meantime, the negative impacts of the high con-
sumption of brown energy (i.e., carbon-intensive fuels) have
caused significant environmental concerns [2]. In order
to address these problems, energy-efficient management
schemes have been proposed [3], [4], [5]. The economical
and environment-friendly renewable energy has been used
to meet the needs of data centers and receives many atten-
tions [6], [7], [8].

However, due to the fluctuation and intermittency prop-
erties of renewable power [2], using renewable power to
supply data centers needs to address two main challenges:

Challenge (1): High Fluctuation. High fluctuation and
intermittency of renewable power pose the risks to data
centers and often lead to the instability of both grid [9] and
clusters [10]. For example, when lots of renewable power
penetrates the system, frequent fluctuation in renewable
power generation can generally degrade system frequency
stabilization, resulting in higher maximum rate-of-change-
of-frequency (ROCOF) [11], which is unsafe and unreliable
for systems. Furthermore, frequent fluctuation of renewable
power also increases the management overheads for renew-
able energy, such as the overhead of frequent load migration
between grid-powered/renewable-energy-powered cluster-
s [12] and the requirement for a large battery capacity [13].

Challenge (2): Low Power Utilization. Based on the
analysis of real-world traces, the generation of renewable
power and the workload power demand in data centers
are different and possibly lead to the imbalance between
demand and supply. This imbalance fails to make full use of
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renewable power in data centers and reduces the utilization
of renewable power [14].

Unfortunately, existing solutions fail to address the
above challenges. Multigreen [7] proposes a cost-
minimizing control algorithm that uses the generated re-
newable power as much as possible, which incurs the fluc-
tuation of renewable power to be used without considering
the renewable energy in battery, and overlooking the effects
of the fluctuation on the stability of grid and data centers.
Moreover, the cost minimizing online scheme [13] stores
all the renewable power into the battery and selectively
charge the battery with the grid. However, storing all the
wind energy of a wind farm with an installed capacity of
12MW requires a large battery capacity and high battery
charging/discharging rate. iSwitch [12] allows the grid and
the renewable energy circuit to be independent of each
other, thus avoiding the impact of wind power fluctuation
on the stability of the grid [9]. Depending on the amount
of renewable energy, iSwitch migrates some virtual ma-
chines to grid-powered clusters, or vice versa. However,
for the servers powered by renewable energy sources, the
fluctuation of renewable power still decreases the stability
of clusters. Moreover, this work fails to use the energy
buffering function of batteries, and the servers hence need
to constantly convert power sources due to the fluctuation
of wind power, which introduces high operation overhead-
s of virtual machine migration to clusters. Furthermore,
workload-based scheduling algorithms [5], [14], [15] allow
the workloads to match renewable power and postpone
workloads until the renewable power is sufficient or the
electricity price is low before the soft-deadline of batch jobs.
But these scheduling algorithms fail to consider the impact
of renewable power fluctuation on the stability of the grid
and data centers.

Our Solution. Unlike existing schemes, we propose an
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efficient smooth renewable power-aware scheme, called S-
moother [16], which contains two main components, i.e.,
Flexible Smoothing (FS) and Active Delay (AD). Flexible
Smoothing in Smoother smooths the frequent fluctuation of
renewable power and provides a relatively stable supply
using energy storage devices (ESDs) of data centers with
finite battery capacity and charging/discharging rate. We
formulate the problem of Flexible Smoothing in Smoother
into a constrained nonlinear programming problem which
determines the optimized charge/discharge scheme for re-
newable energy. Moreover, Active Delay in Smoother im-
proves the utilization of the smoothed renewable power.
Active Delay in Smoother adjusts the execution time of
deferrable workloads, such as batch work, off-line tasks
and low-priority jobs to match the generation of renewable
energy, thus improving the utilization of renewable power.

Contributions. Our paper contains the following contri-
butions:

1) Cost-efficient Synergized Design. We propose an easy-
to-use and efficient smooth renewable power-aware scheme,
called Smoother, which consists of Flexible Smoothing (FS)
and Active Delay (AD). In order to smooth the fluctuation of
renewable power and provide a relatively stable supply to
data centers (challenge 1), Flexible Smoothing in Smoother
carries out the optimized charge/discharge operation via
computing the minimum variance of the renewable power
that is supplied to data centers per interval. In order to
improve the utilization of the smoothed renewable power
(challenge 2), Active Delay in Smoother matches deferrable
workloads of data centers with the generation of renewable
power.

2) Practical Mitigation Scheme. Smoother mitigates the
impact of renewable power fluctuation on the stability of
both grid and data centers using cost-efficient ESD manage-
ment. We explore and exploit finite battery capacity, as well
as the limited charging/discharging rate, which meet the
demands of real-world situations.

3) Suitable for A Variety of Renewable Energy. Smoother
can be used for a variety of renewable power sources,
such as wind power and solar power via executing similar
operations.

4) Real-World Traces and Open-Source Code. Real-world
traces from workloads and renewable power generation are
used in our extensive experiments to show the efficiency
of Smoother. Evaluation results demonstrate that Smoother
significantly reduces the negative impact of renewable pow-
er fluctuations on data centers, and improves the utilization
of renewable power by 250.88% on average. We have re-
leased the source codes for public use in GitHub.

The rest of this paper is organized as follows. We
present the background of data center energy management
in Section 2. In Section 3, we present Smoother design.
The experimental results are shown in Section 4. Section 5
shows the related work. Finally, we conclude this paper in
Section 6.

2 BACKGROUND

In this Section, we present the backgrounds of power sys-
tems of data centers. First, we give a brief description of
data centers’ power infrastructure, and then discuss the

characteristics of renewable energy supply and power con-
sumption in data centers.

2.1 Power Infrastructure in Data Centers
As energy consumers, data centers have two main compo-
nents of power consumption: IT equipments and cooling
devices [17]. These IT equipments contain all servers sup-
porting data computation and storage, as well as network-
ing devices for data communications. In addition, cooling
devices need to be installed in the machine room, which
extracts heat released from IT equipments and decreases the
room temperature. According to the Report to Congress on
Server and Data Center Energy Efficiency [17], the cooling
system consumes a significant amount of energy, which is
close to 30% of total power consumption in data centers. In
general, there is a micro power grid that integrates all power
supplies, such as the electric grid, diesel generator and
renewable energy generators, which allow power infrastruc-
ture to generate and distribute power for IT equipments
and cooling devices. In order to guarantee the availability,
data centers need to rely on brown energy resources, includ-
ing the grid and diesel powers. However, when there are
sufficient renewable sources, it is more sustainable to first
consider to leverage renewable energy, rather than the grid
or diesel generators, to save energy consumption. Although
the renewable power is superior to brown power, some
disadvantages, like time-variant and non-dispatchable, need
to be considered for optimization.

2.2 Renewable Energy Sources
Owing to the characteristics of the brown energy, more
renewable energy has been used in the power consumption
of data centers to lower their operating costs as well as
alleviate their impacts upon environments.

Wind Power: Wind resource characteristics and turbine
properties become the main factors to evaluate the quantity
of power generated from wind energy sources [18]. There
are two features about wind power [19]. First, the power
converted from the wind resource is a fraction, which large-
ly depends on the wind speed variance and is defined as
power coefficient. Second, different types of wind turbines
have different power coefficient curves due to different cut-
in speeds and/or rated output power/speeds. Thus, the
output power Pwind(ν) of a turbine type, with respect to
wind speed ν, can be expressed by a piecewise function:

Pwind(ν) =


0 ν ≤ V in

G(ν) V in < ν ≤ V rate

P rate V rate < ν ≤ V out

0 ν > V out

(1)

where V in and V out are the cut-in and cut-out speeds,
respectively. V rate is the rated speed, P rate is the rated
power, and G(ν) is defined as the power curve between
the cut-in and rated speeds. We use an example to illustrate
the concept of the cut-in, rated, and cut-out speeds. For
example, when the wind speed is 3 m/s (the cut-in speed),
the wind turbine starts to generate usable power. Then the
output power G(ν) increases with the growth of wind speed
until the wind speed reaches 14 m/s (the rated speed). The
corresponding output power is 800 KW (the rated power).
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When the wind speed increases more than the rated speed,
the output power maintains at the rated power. When the
wind speed reaches 25 m/s (the cut-out speed), the wind
turbine has to be shut down to prevent damages.

The optimal wind power generation scheme [18] tries to
leverage multiple curve fitting methods for G(ν). Compared
with polynomial regression and exponential fitting, Gaus-
sian Regression performs the best simulation of the relations
between power coefficient and wind speed, i.e.,

G(ν) = a1e
− (ν−b1)2

c21 + ...+ ane
− (ν−bn)2

c2n 1 ≤ n ≤ 5 (2)

where ai, bi and ci are parameters to be fitted according to
the real-world turbine type.

Solar Power: In addition to wind power, solar resource
is another renewable power which is widely used to supply
data centers. There are two critical factors, including solar
radiation intensity and features of photovoltaic (PV) solar
cells, to determine the amount of power generated from
solar resource. One factor, i.e. solar radiation intensity, de-
pends on weather conditions. By analyzing the solar traces
in National Solar Radiation Data Base [20], the irradiance
follows a clear daily periodical distribution. The availability
of solar energy is merely during daytime and the radiation
intensity is zero during night. Another factor related with
solar power is the features of PV solar cells, which can
convert sunlight directly into electricity. To boost the output
of PV cells, they are connected together to form larger
units known as panels [21]. We estimate the output power
converted from solar irradiation [22] by

Psolar = A · r ·H · PR (3)

where A is the total solar panel area (m2); r indicates the
ratio of the solar panel yield which is defined as electrical
power of solar panel divided by the panel area; H is the
average solar radiation on titled panels; PR (performance
ratio) is the coefficient of solar energy losses, which evalu-
ates the quality of photovoltaic installation.

In addition, Solar-TK [23], [24] and PVlib [25] are state-
of-the-art schemes for modeling and forecasting solar pow-
er. In our evaluation, we predict solar power using both a
model based on Equation (3) (e.g., Fig. 9, Fig. 14 and Fig. 17)
and Solar-TK [24] (e.g., Fig. 15, Fig. 16 and Fig. 18), showing
that different models don’t have impacts on our proposed
Smoother.

2.3 The Power Consumption
For a data center, the main power consumption comes from
IT and cooling equipments. The power usage effectiveness
(PUE), denoted by Rpue, represents the power ratio of two
components, which is equal to the ratio of the data center’s
total power usage Pdatacenter to the power usage of IT
equipments PIT . Thus, the total power consumption of the
data center at interval t can be estimated as [2]:

Pdatacenter(t) = PIT (t) ∗Rpue (4)

where the total energy use of IT equipment PIT is defined
as the combined energy use of servers (including data pro-
cessing servers and data storage servers) and networking
devices [17]:

PIT (t) = Pserver(t) + Pnetwork(t) (5)

The power consumption of networking equipment is ap-
proximately less than 10% of the total peak power of all
servers, which usually can be estimated as a constant.

We assume that there are N machines assembled at a
data center and all machines have similar hardware config-
urations, i.e., each machine consumes the same power at the
same central processing unit (CPU) utilization. The power
consumptions of all servers are the sum of all machines’
power, and the power consumed by individual machine is
linearly scaled by CPU utilization shown in [2]:

Pserver(t) = pidle + (pfull − pidle) ∗ µ (6)

µ(t) =
1

N

N∑
i=1

µi(t) {i = 1, 2, ..., N} (7)

where pidle and pfull are the powers used by all machines
at idle and fully utilized states, respectively. µi represents
the machine i’s CPU utilization, and µ is the average CPU
utilization of all machines.

Evaluating the Effectiveness of Model-Based Power
Characterization [26] demonstrates various models for pow-
er characterization. The results and the in-depth analysis in
the paper show that for modern platforms, the modeling
technique suffers from a basic error that can’t be overcome
by adding complexity. Considering that workloads with
CPU utilization are easy to obtain and portable across
heterogeneous platforms, in this paper, we use a widely-
used power model [27], [28], [29], [30], i.e., Equations (4)
– (7), to convert the CPU utilization into power traces.

3 THE DESIGN OF SMOOTHER

3.1 Design Goals

In order to address the problems of high fluctuation and
low power utilization of renewable power, our paper has
two design goals:

1) Alleviate fluctuation in renewable energy supply,
thereby mitigating the impact of renewable power fluctua-
tion on the stability and safety of both grid and data centers
as well as reducing the overhead of energy switching in
data centers (e.g., the overhead of virtual machine migra-
tion between grid-powered clusters and renewable-energy-
powered clusters).

2) Improve the utilization of renewable power by allevi-
ating the imbalance between supply and demand, making
full use of renewable power in data centers.

The idea behind Smoother is to alleviate frequent fluctu-
ation of renewable power and improve the utilization of re-
newable power. Specifically, we divide the renewable power
supply into three regions and put forward the correspond-
ing processing schemes for different regions. Smoother con-
sists of two main components, including Flexible Smoothing
(FS) and Active Delay (AD). Flexible Smoothing in Smoother
provides a relatively stable renewable power supply by
using energy storage devices, thus offering the smoothing
effect. Active Delay in Smoother matches the deferrable
workloads with renewable power generation and thus im-
prove the utilization of renewable power.
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Fig. 1. The normalized variance of capacity factor for solar power for
every two hours in June 2015, latitude 42◦ and longitude −72◦ [24].
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Fig. 2. Differentiated regions in solar power trace.

3.2 Regions Division in Power Generation

3.2.1 Regions in Solar and Wind Power Traces
Based on the degree of renewable power fluctuation, we
divide renewable power traces into different regions. Opti-
mal Harvesting Wind Power [18] introduces the concept of
the capacity factor, which is the ratio of the actual output
power P (t) to the rated output power P rate. The higher the
capacity factor is, the more electricity is actually generated.
In this paper, we use the capacity factor variance σ2

power

during an interval [0, T ] to represent the fluctuation of
renewable power supply. We calculate the capacity factor
variance σ2

power :

σ2
power =

1

T

T∑
t=0

(
P (t)

P rate
− µcf )

2 (8)

where µcf is the average capacity factor during an interval
[0, T ]:

µcf =
1

T

T∑
t=0

P (t)

P rate
(9)

Fig. 1 and 3 show the normalized variances of capacity
factor, i.e., the ratio of the standard deviation to the mean,
for solar and wind power within a month. We observe
that the wind power fluctuates more frequently than solar
power. Therefore, we divide solar and wind power traces
into two and three regions respectively.

Two Regions in Solar Power Traces. By analyzing the
solar traces in National Solar Radiation Data Base [20], the
solar power follows a clear daily periodical distribution,
which means the solar energy is merely available during
daytime. Fig. 2 shows a real-world example of solar power
trace. we divide solar power traces into two regions.

In Region-I, compared with other regions, the solar
power supply is relatively stable and unnecessary to be
processed by Flexible Smoothing in Smoother. Specifically,
Region-I consists of two situations according to the daily
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Fig. 3. The normalized variance of capacity factor for wind power in each
hour in May 2011, California, USA [31].
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Fig. 4. Differentiated regions in wind power trace.

periodical distribution of solar power: 1) Solar power is
unavailable during night because the radiation intensity is
zero. 2) The solar power is stable when the solar radiation
remains constant during daytime.

In Region-II, the fluctuation of solar power often results
in the instability of power supplies in data centers, as dis-
cussed in Section 1. We hence consider how to decrease the
degree of solar power fluctuation during this region. Specif-
ically, the fluctuation of solar power is relatively moderate
compared with that of wind power. It is hence feasible to
use the uninterrupted power supply (UPS) battery to com-
plement this fluctuation. We adopt Flexible Smoothing in
Smoother to provide a relatively stable supply of renewable
energy, as described in Section 3.3.

Three Regions in Wind Power Traces. Fig. 4 shows a
real-world example of wind power trace, which comes from
National Renewable Energy Laboratory (NREL) [31]. Based
on the degree of wind power fluctuation, we divide wind
power traces into three regions.

Specifically, Region-I consists of two situations of wind
power generation according to Equation (1): 1) Wind power
is nearly unavailable when the wind speed is less than
the cut-in speed or larger than the cut-out speed. 2) The
wind power is stable at the designated rated power of
wind turbines when the wind speed is between the rated
speed and the cut-out speed. In Region-I, the wind power
supply is stable and unnecessary to be processed by Flexible
Smoothing.

In Region-II, the wind power fluctuates frequently.
In order to obtain a suitable trade-off between the s-
moothing effect and the required maximum rate of charg-
ing/discharging battery (and the resulting battery capaci-
ty), we further divide Region-II into two sub-regions, i.e.,
Region-II-1 and Region-II-2, based on the degree of wind
power fluctuation.

In Region-II-1, the fluctuation of renewable power is
relatively moderate compared with that in Region-II-2. We
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Fig. 5. The cumulative distribution function of capacity factor variance in
May 2011, California [31].

process the wind power supply in Region-II-1 like the solar
power supply in Region-II, and execute Flexible Smoothing
in Region-II-1 to provide a relatively stable supply of wind
power.

In Region-II-2, renewable power fluctuates too frequent-
ly. In order to alleviate the fluctuations, Region-II-2 needs
to carry out higher battery charging/discharging rate and
battery capacity than other regions. Considering the trade-
off between the smoothing effect and the required maximum
rate of charging/discharging battery (and the resulting bat-
tery capacity), we do not execute Flexible Smoothing in
Smoother in Region-II-2.

In summary, we set the proportion of Region-II-2 to 0%–
5% of the total regions of renewable power trace accord-
ing to the actual situation. Active Delay in Smoother in
Section 3.4 is used to address the mismatch between the
smoothed renewable power and workload demand, thus
increasing the utilization of renewable power.

3.2.2 Distinguishing Different Regions

We distinguish different regions by defining the thresholds
of the variance of capacity factors. A specific threshold can
be determined via the supply history of renewable energy
and the required maximum rate of charging/discharging
battery.

We use an example to illustrate how to use the thresh-
olds of the capacity factor variance to distinguish Region-I,
Region-II-1 and Region-II-2. The effects of different thresh-
olds are discussed in the next subsection.

In order to illustrate how to use the thresholds of the
variance to distinguish different regions, we leverage the
wind power data every five minutes in May 2011, Califor-
nia, USA from NREL [31] and then calculate the variance of
capacity factor in each hour. Figure 5 shows the cumulative
distribution function (CDF) of the above hourly values of
variance in May 2011. In Figure 5, the probability reaches
95% when the variance of capacity factor is smaller than
2∗1011 (the threshold between Region-II-2 and Region-II-1).
The probability is 30% when the variance of capacity factor
is smaller than 4.45∗108 (the threshold between Region-II-1
and Region-I). When the variance of capacity factor is larger
than 2 ∗ 1011, we observe the CDF curve increases slowly in
Figure 5, meaning that this region accounts for a low pro-
portion of the entire region. At the same time, as shown in
Fig. 6, the required maximum rate of charging/discharging
battery (and the resulting battery capacity) grows rapidly
when the CDF of the variance increases, which is used
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Fig. 6. The effects of different variance thresholds for distinguishing
Region-II-1 and Region-II-2 on the optimization results and battery
charging/discharging rate requirements. W/ Smooth and W/O Smooth
means with and without performing Flexible Smoothing in Smoother
respectively. Battery MaxVol represents the required maximum battery
charging/discharging rate for Flexible Smoothing, which also represents
the trend of the required battery capacity.

to distinguish Region-II-1 and Region-II-2 (For example, a
CDF value of 0.95 means Region-II-2 accounts for 5% of
the total regions). At the same time, the “energy switching
times” becomes smaller as the CDF value increases. Since
there is “switching times” in Fig. 6, we introduce the con-
cept of “energy switching times”, which is interpreted as
the virtual machine migration times between grid-powered
clusters and renewable-energy-powered clusters. Frequent
fluctuations of renewable energy usually mean frequent
load migration, which increases operation overheads. Thus
we use the metric “energy switching times” in the power
supply between the grid and renewable power to represent
the impact of renewable power fluctuation on data cen-
ters. For the difference between Region-II-1 and Region-I,
a smaller probability of Region-I means a larger number
of charging/discharging operations in Flexible Smoothing
in Smoother. However, frequent charging and discharging
operations exacerbate battery lifetime and increase energy
loss [32]. Therefore, in a real-world system, we need to trade
off the battery consumption and energy switching overhead.

3.3 Flexible Smoothing in Smoother

The main idea of Flexible Smoothing in Smoother is to alle-
viate the frequent fluctuation of renewable power in Region-
II-1 and achieve a relatively stable supply of renewable
energy to data centers. Renewable energy generation can
be estimated by Equations (1) – (3) in Section 2.2 given
meteorological data [18], [22]. On the other hand, the future
generation of renewable energy can be predicted by lots
of methods [23], [24], [25], [33], [34], [35], [36], [37]. For
example, LSSVM−GSA model for wind power prediction
achieves less than 15% absolute error within 48 hours for
100% data points, and less than 10% absolute error for
97.92% data points [36]. The SUNY solar forecast model
reports 13.4% – 17.4% MAPE and 21% – 25.3% rRMSE for
3-hours ahead solar forecasts [33]. Note that the prediction
mechanism is out of the scope of this paper, and we leverage
a widely-used method based on Equations (1) – (3) in
Section 2.2 and Solar-TK [24] to predict renewable power.

At the beginning of each interval (e.g., one hour), Flexi-
ble Smoothing in Smoother determines the optimized bat-
tery charging/discharging scheme in the incoming inter-
val. Through the implementation of the optimized battery
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Fig. 7. The smoothed wind power (W/ FS) versus the original wind power
(W/O FS). The region in Region-II-1 becomes stable like Region-I after
using Flexible Smoothing in Smoother.

charging/discharging operation, the data center can obtain
a relatively smooth renewable energy supply.

Suppose that there are m time points (e.g., m = 12) in
the interval [1,m]. U = [u1u2...um]T represents the amount
of the generated renewable energy at each time point (e.g.,
five minutes). S = [s1s2...sm]T represents the battery charg-
ing/discharging amount at each time point. A positive si
indicates that the battery is discharged with the amount of
|si| at time point i, and a negative si indicates the battery is
charged with the amount of |si| at time point i. We use A to
represent the final amount of renewable energy supplied
to the data center after the battery charging/discharging
operation at each time point in the interval [1,m]:

A = U + S =


a1
a2
...
am

 =


u1 + s1
u2 + s2

...
um + sm

 (10)

We formulate the problem of Flexible Smoothing in S-
moother into the constrained nonlinear programming prob-
lem:

min σA =

√√√√ 1

m

m∑
i=1

(ai − ā)2 (11)

subject to :

∀i ∈ [1,m],


0 ≤ |si| ≤ 0.8M, si ≥ 0

0 ≤ |si| ≤ ui, si < 0
(12)

∀i ∈ [1,m], 0.2M ≤ |
i∑

t=1

st| ≤ M (13)

where M is the battery capacity, and ā is the average
value of ai (i ∈ [1,m]). We assume that each time point
is five minutes, and m is equal to 12 since the decision is
computed each hour. Equation (12) means that at each time
point, the amount of charging battery can not exceed that
of generating renewable energy at that time. The amount
of discharging battery can not exceed 80% of the battery
capacity to avoid the damage of full discharge on the
battery [38]. Equation (13) indicates that the accumulated
electric quantity of the battery can not exceed the battery
capacity or be less than 20% of the battery capacity during
the interval [1,m]. We use MATLAB to solve this nonlinear
programming problem with negligible computational over-
head.

It is worth noting that the rate limits of charg-
ing/discharging battery are implicitly considered in our
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Fig. 8. The imbalance between workload demand and renewable power
supply. The renewable energy in the green area can not be used by data
centers.

model proposed above. In our implementation in Section 4,
the battery capacity is set to sustain half interval (e.g.,
half an hour) of operations at the maximum rate of charg-
ing/discharging battery, while the decision is computed
each interval (e.g., one hour). Actually, the larger battery
capacity will yield the better smoothing effect.

Based on the results of Equations (10) – (13), we execute
the battery charging/discharging operations on the UPS
battery. Fig. 7 shows the smoothed wind power versus the
original wind power, where W/ FS means “with Flexible
Smoothing”, which represents the final wind power sup-
ply after performing Flexible Smoothing in Smoother. W/O
FS means “without Flexible Smoothing”, representing the
original output power of wind turbines. After performing
Flexible Smoothing in Smoother in Region-II-1, the fluctua-
tion of the renewable energy supply becomes moderate like
Region-I, as shown in the red dotted circle in Fig. 7.

3.4 Active Delay in Smoother
The main idea of Active Delay in Smoother is to match the
deferrable workloads with the smoothed renewable power
generation under the condition of meeting the soft-deadline
of deferrable workloads, thus improving the utilization of
renewable power.

Random requests from users often result in the fluc-
tuation of workload power demands in data centers. The
fluctuations of workload power demand and the smoothed
renewable power supply are different and thus possibly
lead to the imbalance between supply and demand, which
fails to make full use of renewable energy in data centers.
As shown in Fig. 8, the workload power demand and
the renewable power supply change over time. When the
renewable power supply is larger than the workload power
demand as shown in the green area, the excess renewable
energy can not be used by data centers.

Real-time workloads, such as Web access [39], need to
be executed immediately once a request is issued. However,
for the deferrable workloads such as batch jobs, their char-
acteristics provide opportunities to increase the utilization
of the renewable energy. When the renewable power supply
is insufficient, the workloads can be deferred to a future
time slot. In many workload schedulers, the deadline and
the expected running time for each job can be provided by
users or estimated using historical statistics [14]. Therefore,
we assume to obtain the above information from users or
historical statistics.

We present the details of Active Delay in Smoother in
Algorithm 1. Note that when using Fixed pricing (FP) or



7

Tiered Pricing (TP) as electricity Pricing, increasing renew-
able power utilization can reduce electricity bills. At this
point, the main idea of Active Delay in Smoother is to
schedule jobs for increasing renewable power utilization.
However, Time-of-Use pricing (ToU) has three periods (i.e.,
on-peak , mid-peak and off-peak) with different grid prices,
and scheduling jobs only for the highest renewable energy
use may incur higher grid costs. Therefore, when using ToU,
Active Delay in Smoother is to schedule jobs for reducing
grid costs.

Specifically, in Algorithm 1, the requestJob (Line 1) is
a workload request queue which contains the original re-
quests for each job. The queueJob (Line 2) contains the
ordered jobs (requests) that will be scheduled in sequence
into the following time. For every small time slot (e.g., one
minute), we first calculate the power quantity that needs
to be consumed by each job in requestJob (Line 6). More
details are described in Section 2.3. Then, each job is inserted
into the queueJob in the ascending order of its slack-time,
which is defined as deadline minus the sum of running
time and current time (Lines 7–8). We schedule each job
in this queue in sequence. For each job in the queueJob, we
determine whether the slack-time of the current job is larger
than 0 (Lines 11–12). Slack-time > 0 means that the current
job is a non-real-time job and can be scheduled into the
following time. If so, we traverse the slack-time and choose
the time with the lowest grid costs (using ToU, Lines 13–18)
or with the highest renewable energy use (using FP or TP,
Lines 20–25) as the real execution time for the current job.
It is worth noting that the scheduling of the current job is
based on the scheduling results of previous jobs (i.e., Active
Delay in Smoother maintains renewable power for previous
jobs) in queueJob, and there are no conflicts of the optimal
execution time among jobs. Line 19 (or Line 26) updates
the remaining renewable power after the scheduling (i.e.,
maintaining resources for the current job). But if the slack-
time of the current job is not larger than 0, this job needs to
be carried out immediately (Lines 28–30).

4 PERFORMANCE EVALUATION

Smoother consists of Flexible Smoothing (FS) and Active
Delay (AD). Flexible Smoothing in Smoother is the design
focus of this paper, which aims to alleviate fluctuations of
renewable power, thereby reducing operation overheads of
data centers (e.g., the overhead of virtual machine migra-
tion between grid-powered clusters and renewable-energy-
powered clusters). Active Delay in Smoother improves the
utilization of renewable power. We examine the perfor-
mance of Smoother in terms of multiple metrics, including
energy switching times between the grid and renewable
power in the power supply via real-world workloads and
renewable power traces, which represent the impact of
renewable power fluctuation on data centers, renewable
energy utilization and grid costs

4.1 Experimental Setup

Data Center Configurations: We assume that a data center is
equipped with 11, 000 servers and each server has the same
processing power [2], i.e., identical energy consumption for

Algorithm 1 Active Delay in Smoother.
Input: Data center workload requests and the smoothed

renewable power supply
Output: The execution time of each job and the optimal use

of the grid and renewable power
1: queue<Job> requestJob;
2: priority queue<Job> queueJob;
3: for each small time slot do
4: if requestJob.size() > 0 then
5: for job: requestJob do
6: calWorkloadPower(job);
7: slackTime = job.deadline − job.runTime − cur-

rentTime;
8: queueJob.push(job, slackTime);
9: requestJob.pop();

10: end for
11: for job: queueJob do
12: if job.slackTime > 0 then
13: if electricityPricing == ToU then
14: for time: slackTime do
15: costs = getGridCostsWhenStartAt-

Time(job,time);
16: end for
17: startTime = getStartTimeOfJobForMini-

mumGridCosts(job);
18: executeJob(job, startTime);
19: updateRemainRPower(job, startTime);
20: else
21: for time: slackTime do
22: power = getRenewablePowerUsedWhen-

StartAtTime(job, time);
23: end for
24: startTime = getStartTimeOfJobForMaxi-

mumRenewablePower(job);
25: executeJob(job, startTime);
26: updateRemainRPower(job, startTime);
27: end if
28: else
29: executeJob(job, currentTime);
30: updateRemainRPower(job, currentTime);
31: end if
32: queueJob.pop();
33: end for
34: end if
35: end for

executing the same jobs. The peak power of each server is
186W and the idle power is 62W [12]. Each server runs
the same workloads and has similar CPU utilization, like
existing experimental configurations [12].

Workload Traces: Our evaluation uses three typical real-
world workloads, including Web workloads [39], Google
cluster-data [40] and batch workloads [41]. Specifically,
Google trace provides real-world power consumption from
a 12, 500-machine cell over about a month-long period in
May 2011 [40]. According to Equations (4) – (7) in Sec-
tion 2.3, we convert the CPU utilization into power trace.
The time-sensitive Web workloads are collected from the
real-world logs provided by the Internet Traffic Archive [39].
We generate the number of requests per minute from the
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request logs and convert this number into CPU utilization
via a linear analog [12], which sets the utilization as 100%
when the request rate is the maximum and 0% when the
request rate is the minimum. As shown in Table 1, we
select five Web workload traces with different average CPU
utilizations during one week. The third workloads are batch
workloads. The logs of Real Parallel Workloads from Pro-
duction Systems [41] provide system information, such as
average CPU utilization, work arrival time, execution time,
deadline and the number of the required servers. For each
job, the energy consumption requirements can be calculated
by the CPU utilization, the number of servers used, etc. In
our simulation, we choose four batch workload traces with
different CPU utilizations as shown in Table 2.

TABLE 1
Five Web workload traces with different average CPU utilizations [39].

Web Description Avg. CPU
utilization

Calgary CS departmental Web server 3.63%
U of S University Web server 7.21%
NASA Kennedy Space Center Web server 28.89%
Clark ClarkNet Web server 35.78%
UCB UC Berkeley IP Web server 46.04%

TABLE 2
Batch workload traces with different CPU utilizations [41].

Batch Workload Traces Avg. CPU utilization
LLNL Thunder 86.7%

LANL CM5 74.4%
HPC2N 60.1%

Sandia Ross 49.9%

TABLE 3
Renewable power traces with different volatility [42] [20].

Renewable Power Traces Site ID (Wind) Date (Solar)

Low volatility
CA(9122) May 8

OR((24258) May 17
WA(29359) May 22

High volatility
TX(10) May 9

CO(11005) May 18
WY(16419) May 23

Renewable Power Traces: Wind power traces come from
Wind Data Resources [42] of the National Renewable Energy
Laboratory (NREL) [31]. Solar power traces come from Na-
tional Solar Radiation Data Base [20]. As shown in Table 3,
we select two groups of renewable power traces that are
differentiated by volatility intensity. The low volatility traces
have relatively stable and smooth generation, while the
high volatility traces have output rate with high volatility.
In addition, we use Solar-TK [23], [24] to generate a solar
power trace in June 2015, latitude 42◦ and longitude −72◦.

4.2 Results and Analysis
We use energy switching times between the grid and wind
power in the power supply of server clusters to represent
the impact of renewable energy fluctuations on a data center.
Smoother is compared with the standard battery storage
scheme where the data center first uses renewable power as

00.51
1.52

0 6 12 18 24Solar Power 
(MW)

Time (hours)
May 9 May 17May 18 May 22

(a) Solar power traces on May 9, 17, 18 and 22, 2011, California,
USA [20].
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(b) Energy switching times on May 9, 17, 18 and 22.

Fig. 9. The comparison of energy switching times with different solar
fluctuation degrees between “W/O FS” scheme and “W/ FS” scheme.

much as possible without the battery, and then the battery
stores the remaining renewable power and discharges when
the renewable power is insufficient. This battery storage
solution is efficient and adopted by many works such as
Multigreen [7]. We use Comp to represent the standard
battery storage scheme. W/ means “with”, and W/O means
“without”.

4.2.1 Evaluation of Flexible Smoothing in Smoother
We present the performance evaluation of Flexible Smooth-
ing in Smoother via the metric of energy switching times. As
described in Section 3.2, we set the capacity factor variance
whose corresponding CDF value is 0.95 as the threshold to
distinguish Region-II-1 and Region-II-2. We execute Flexible
Smoothing in Smoother in Region-II-1. Flexible Smoothing
in Smoother is able to achieve a smooth and stable re-
newable energy supply by pre-calculating the optimized
charge/discharge strategy of the battery.

In Fig. 9, we obtain four-day solar power with different
fluctuation degrees in May 2011, California, USA [20], and
compare the energy switching times after carrying out Flexi-
ble Smoothing in Smoother with the initial energy switching
times within four days. From Fig. 9(a), we observe that
solar power fluctuates most frequently on May 18. By using
Flexible Smoothing in Smoother, the energy switching times
significantly decrease on May 18, but the decreased degrees
become smaller on other days, as shown in Fig. 9(b). The
main reason is that Flexible Smoothing in Smoother aims to
alleviate the fluctuation degree of renewable power. Hence
if the renewable power is smooth, Flexible Smoothing in
Smoother plays the less important role.

In the similar way, we use five Web workload traces in
Table 1 and two groups of wind power traces in Table 3
respectively for comparisons in terms of energy switching
times. When the total installed wind turbine capacity is
976KW, the results are shown in Fig. 10 and Fig. 11. When
the total installed wind turbine capacity is 1525KW, the
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Fig. 10. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different workloads (The rated output
power of wind energy is 976KW).
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Fig. 11. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different wind power traces (The rated
output power of wind energy is 976KW).

results are shown in Fig. 12 and Fig. 13. We observe that with
different workloads and renewable power traces, Flexible
Smoothing in Smoother can effectively reduce the energy
switching times compared with the general battery storage
solution, thus significantly reducing the negative impact
of renewable power fluctuation on data centers. Fig. 11
and Fig. 13 also demonstrate that Flexible Smoothing in
Smoother brings more remarkable effect when processing
renewable traces with high volatility.

4.2.2 Evaluation of Active Delay in Smoother

Flexible Smoothing in Smoother aims to alleviate fluctua-
tions of renewable power, while Active Delay in Smoother
aims to improve the utilization of renewable power. We
examine the performance of Active Delay in Smoother in
the metric of renewable power utilization and grid costs.

Table 2 shows batch workload traces with different CPU
utilizations. As shown in Fig. 14, with different workloads
under different renewable energy supplies, the utilization
of renewable power increases by an average of 250.88%
by using Active Delay in Smoother. Whether or not the
renewable power is sufficient, all the workloads increase
the utilization of renewable power after performing Active
Delay in Smoother. Fig. 15 uses one-month solar power
trace in June 2015 [24] and the Sandia Ross batch workload
trace. Active Delay in Smoother increases the utilization of
renewable power by an average of 241.09%. Moreover, we
use AD ToU to represent the Active Delay algorithm with
Time-of-Use pricing. Since the time of the solar power traces
is June 2015, we adopt the corresponding historical ToU
prices of Ontario Hydro [43], i.e., 12.2 cents/kWh for mid-
peak period (7 : 00 AM – 11 : 00 AM and 5 : 00 PM –
7 : 00 PM on weekdays), 16.1 cents/kWh for on-peak period
(11 : 00 AM – 5 : 00 PM on weekdays), and 8 cents/kWh for
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Fig. 12. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different workloads (The rated output
power of wind energy is 1525KW).
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Fig. 13. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different wind power traces (The rated
output power of wind energy is 1525KW).

off-peak period (7 : 00 PM – 7 : 00 AM on weekdays and
all day on weekends and holidays). As shown in Fig. 16,
the grid costs decrease by an average of 7.66% when using
Active Delay in Smoother with ToU pricing. We argue that
Active Delay in Smoother can significantly improve the
utilization of renewable energy, reduce the use of brown
energy and decrease the electricity costs of data centers and
carbon emissions.

We also compare energy switching times between “W/O
FS and W/ AD” and “W/ FS and W/ AD ” schemes.
As shown in Fig. 17 and 18, the “W/ FS and W/ AD”
scheme significantly reduces the energy switching times by
an average of 25% and 24.74% respectively, thus mitigating
the negative impact of renewable energy fluctuations on
data centers.

.
In summary, by using Flexible Smoothing and Active

Delay, our proposed Smoother significantly reduces the
negative impact of renewable power fluctuation on data
centers and increases the utilization of renewable power,
thus improving the stability of the grid and data centers
and reducing the cost of data centers.

5 RELATED WORK

In order to meet the energy needs of data centers, existing
schemes have been proposed by exploiting the economical
and environment-friendly renewable powers in terms of
leveraging energy storage devices and workload schedul-
ing.

Energy Storage: Existing schemes generally leverage en-
ergy storage devices to reduce electricity costs [7], [13], [27],
[44], [45], [46], [47], mitigate peak power [48], minimize car-
bon emissions of the grid [49] and eliminate the fluctuation
of renewable energy [13], [44], [49]. The optimal control of
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Fig. 14. The comparison of renewable power utilization between “W/ FS
and W/O AD” scheme and “W/ FS and W/ AD” scheme with different
workloads and renewable power traces [20], [31].
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Fig. 15. The comparison of renewable power utilization between “W/ FS
and W/O AD” scheme and “W/ FS and W/ AD” scheme with the Sandia
Ross workload and one-month solar power traces [24].

end-user energy storage [46] stores energy at much lower
prices in a battery that discharges when the energy prices
are high to meet the demand for cost savings. Multigreen [7]
proposes a cost-minimizing control algorithm to determine
the amount of energy drawn from a long-term grid market,
a real-time grid market and energy storage devices which
store excess renewable power. Optimal power cost man-
agement [47] designs an algorithm for exploiting the UPS
unit and delay-tolerance of workloads with time-varying
power prices to reduce the electricity bill of a data center.
The comprehensive understanding of operation cost reduc-
tion [45] conducts a quantitative analysis on normalized
electricity price in the battery storage and thermal energy
storage for internet data centers, and concludes that the cost
of the energy storage devices are largely affected by the
storage capacity and the location of data centers. The cost
minimizing online scheme [13] stores the wind energy of a
wind farm into batteries to eliminate the fluctuation of re-
newable power. However, storing all the wind energy needs
a large battery capacity. In order to address the problem of
peak power, EBuff [48] proposes a peak reduction algorithm
leveraging energy storage. A low-complexity algorithm [27]
schedules heterogeneous workloads with UPS system to
minimize the energy cost of an internet data center. The
batteries are charged when the renewable power is more
than the power consumption or the electricity price is low.
However, this work overlooks the fluctuation of the re-
newable power without using the batteries, which possibly
incurs the instability of grid and data centers. Emission-
aware Energy Storage Scheduling [49] leverages distributed
energy storage and aims to minimize carbon emissions of
the grid. GreenFlowing [44] is a scheduling scheme that
leverages different types of ESDs to reduce the electricity
cost for a cloud data center. These schemes with energy
storage [44], [49] typically store all the available renewable
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Fig. 16. The comparison of grid costs between “W/ FS and W/O
AD ToU” scheme and “W/ FS and W/ AD ToU” scheme with the Sandia
Ross workload and one-month solar power traces [24].
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Fig. 17. The comparison of energy switching times between “W/O FS
and W/ AD” scheme and “W/ FS and W/ AD” scheme with different
workloads and renewable power traces [20], [31].

sources in batteries for later use, which requires a large
storage capacity and high battery charging/discharging
rate. Unlike them, Smoother alleviates the fluctuation of
renewable energy supply in a complementary manner with
finite battery capacity and charging/discharging rate.

Renewable Energy Generation: Optimal Harvesting
Wind Power [18] and PV Solar Energy Calculation [22]
show the computation of estimating the renewable energy
generation with meteorological data. On the other hand, the
future generation of renewable energy can be predicted by
lots of methods [23], [24], [25], [33], [34], [35], [36], [37]. For
example, LSSVM−GSA model for wind power prediction
achieves less than 15% absolute error within 48 hours for
100% data points, and less than 10% absolute error for
97.92% data points [36]. The SUNY solar forecast model
reports 13.4% – 17.4% MAPE and 21% – 25.3% rRMSE for
3-hours ahead solar forecasts [33]. Note that the prediction
mechanism is out of the scope of this paper, and the above
prediction methods can be integrated into our system. In
this paper, we leverage a widely-used method based on
Equations (1) – (3) in Section 2 and Solar-TK [24] to predict
renewable power.

Workload Scheduling: In order to address the problem of
the mismatch between data center workloads and green en-
ergy supplies, existing workload scheduling schemes have
been proposed [5], [14], [15]. Their basic idea is to post-
pone the deferrable workloads until the renewable power
is sufficient or the electricity price is low before the soft-
deadline of workloads. In addition, some schemes lever-
age geographical load balancing among distributed data
centers to improve the utilization of renewable power [8].
However, these algorithms fail to consider the impact of
renewable power fluctuation on the stability of the grid
and data centers. A self-adaptive approach to managing
applications and harnessing renewable energy [50] proposes
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Fig. 18. The comparison of energy switching times between “W/O FS
and W/ AD” scheme and “W/ FS and W/ AD” scheme with the Sandia
Ross workload and one-month solar power traces [24].

a deferring algorithm for batch workloads and a brownout-
based algorithm for interactive workloads, which improve
the renewable energy usage and reduce the carbon footprint
of the data centers. However, the self-adaptive approach
currently fails to deal with the renewable power fluctuation
but includes a battery model as future work.

Compared with the conference version [16], the im-
proved journal version includes the new description about
solar power, the division of regions in the solar power traces,
the adaptive Flexible Smoothing scheme, the improved Ac-
tive Delay algorithm with ToU pricing, as well as many new
evaluation results using real-world solar power traces.

6 CONCLUSION

Providing a smooth and stable supply of renewable pow-
er and improving the utilization of renewable power are
important in modern data centers. We propose a smooth
renewable power-aware scheme, called Smoother, which
consists of Flexible Smoothing (FS) and Active Delay (AD).
The novelty behind Smoother is that we emphasize the
impact of frequent fluctuation of renewable power on the
stability of the grid and data centers, as well as improv-
ing the utilization of renewable power. The trace-driven
evaluation demonstrates that our proposed Smoother offers
a smooth and stable supply of renewable power for data
centers, reducing the energy switching times by 25% on
average and improving the utilization of renewable power
by an average of 250.88%. Smoother is able to improve
system performance and the stability of the grid and data
center systems, while reducing the costs of data centers. We
have released the source code of Smoother for public use at
https://github.com/csXinxinLiu/Smoother.
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