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Abstract—The large electricity bills and the negative impacts
on environments accelerate the use of renewable power to sup-
ply systems. However, frequent fluctuation and intermittency
of renewable power often cause the challenges in terms of the
stability of both electricity grid and systems, as well as decrease
the utilization of renewable power. Existing schemes fail to
alleviate the renewable power fluctuation, which is caused by
the essential properties of renewable power. In order to address
this problem, we propose an efficient and easy-to-use smooth
renewable power-aware middleware, called Smoother, which
consists of Flexible Smoothing (FS) and Active Delay (AD).
First, in order to smooth the fluctuation of renewable power,
Flexible Smoothing carries out the optimized charge/discharge
operation via computing the minimum variance of the renew-
able power that is supplied to systems per interval. Second,
Active Delay improves the utilization of renewable power via
actively adjusting the execution time of deferrable workloads.
Extensive experimental results via examining the traces of real-
world systems demonstrate that Smoother significantly reduces
the negative impact of renewable power fluctuations on systems
and improves the utilization of renewable power by 169.85%
on average. We have released the source codes for public use.

Keywords-renewable power; middleware; energy manage-
ment;

I. INTRODUCTION

Today, with the rapid growth of computation capability

and the scale of systems, the large electricity bills have

become almost unaffordable [1]. At the same time, the neg-

ative impacts of the high consumption of brown energy (i.e.,

carbon-intensive fuels) have caused significant environmen-

tal concerns [2]. In order to address these problems, energy-

efficient management schemes have been proposed [3]–[9].

In the meantime, the economical and environment-friendly

renewable energy has been used to meet the needs of systems

and receives many attentions [10]–[14].

However, renewable power has the essential properties of

fluctuation and intermittency [2]. Using renewable power to

supply systems needs to address two main challenges:

Challenge (1): High Fluctuation. Frequent fluctuation

of renewable power poses the risks to systems and often

leads to the instability of both grid [15] and clusters [16].

For example, when lots of renewable power penetrates the

system, frequent fluctuation in renewable power genera-

tion can generally degrade system frequency stabilization,

resulting in higher maximum rate-of-change-of-frequency

(ROCOF), which is unsafe and unreliable for systems.

Furthermore, high fluctuation and intermittency of renew-

able power also increase the management overheads for

renewable energy, such as the overhead of frequent load

migration between grid-powered clusters and renewable-

energy-powered clusters [17] and the requirement for a large

battery capacity [18].

Challenge (2): Low Power Utilization. The renewable

power generation and the workload power demand in sys-

tems are different and possibly lead to the imbalance

between supply and demand, based on the analysis of real-

world traces as shown in Fig. 6. This imbalance fails to

make full use of renewable power in systems and reduces

the utilization of renewable power [19].

Existing solutions fail to address the above challenges.

Multigreen [13] proposes a cost-minimizing control algo-

rithm that uses the generated renewable power as much as

possible, which incurs the fluctuation of renewable power to

be used without considering the renewable energy in battery,

and overlooking the effects of the fluctuation on the stability

of grid and systems. Moreover, the cost minimizing online

algorithms [18] store all the renewable power into the battery

and selectively charge the battery with the grid. However,

storing all the wind energy of a wind farm with an installed

capacity of 12MW requires a large battery capacity and

high battery charging/discharging rate. iSwitch [17] allows

the grid and the renewable energy circuit to be independent

of each other, thus avoiding the impact of wind power

fluctuation on the stability of the grid [15]. Depending on

the amount of renewable energy, iSwitch migrates some

virtual machines to grid-powered clusters, or vice versa.

However, for the servers powered by renewable energy

sources, the fluctuation of renewable power still decreases

the stability of clusters. Moreover, this work fails to use

the energy buffering function of batteries, and the servers

hence need to constantly convert power sources due to the

fluctuation of wind power, which introduces high operation

overheads of virtual machine migration to clusters. Further-

more, workload-based scheduling algorithms [4], [19], [20]

allow the workloads to match renewable power and postpone

workloads until the renewable power is sufficient or the



electricity price is low before the soft-deadline of batch jobs.

But these scheduling algorithms fail to consider the impact

of renewable power fluctuation on the stability of the grid

and systems.

Our Solution. Unlike existing schemes, we propose an

efficient smooth renewable power-aware middleware, called

Smoother, which consists of Flexible Smoothing (FS) and

Active Delay (AD). Flexible Smoothing in Smoother s-

mooths the frequent fluctuation of renewable power and pro-

vides a relatively stable supply using energy storage devices

(ESDs) with finite battery capacity and charging/discharging

rate. We formulate the problem of Flexible Smoothing into

a constrained nonlinear programming problem which deter-

mines the optimized charge/discharge scheme for renewable

energy. Moreover, Active Delay improves the utilization of

the smoothed renewable power. Active Delay adjusts the

execution time of deferrable workloads, such as batch work,

off-line tasks and low-priority jobs to match the generation

of renewable energy, thus improving the utilization of

renewable power.

Contributions. Our paper contains the following contri-

butions:

1) Cost-efficient Synergized Design. we propose an

efficient and easy-to-use smooth renewable power-aware

middleware, called Smoother, which contains two main

components, i.e., Flexible Smoothing (FS) and Active Delay

(AD). In order to smooth the fluctuation of renewable

power and provides a relatively stable supply to systems

(challenge 1), Flexible Smoothing (FS) carries out the

optimized charge/discharge operation via computing the

minimum variance of the renewable power that is supplied to

systems per interval. In order to improve the utilization of the

smoothed renewable power (challenge 2), Active Delay (AD)

matches deferrable workloads of systems with the generation

of renewable power.

2) Practical Mitigation Scheme. Smoother mitigates the

impact of renewable power fluctuation on the stability of

both grid and systems using cost-efficient ESD management.

We explore and exploit finite battery capacity, as well as the

limited charging/discharging rate, which meet the demand

of real-world situations.

3) Suitable for A Variety of Renewable Energy. Smoother

can be used for a variety of renewable power sources, while

executing similar operations. In this paper, without loss of

generality, we only discuss the case study of wind power

due to space limitation.

4) Real-World Traces and Open-Source Code. We have

simulated Smoother by using MATLAB and released the

source codes for public use in GitHub. Real-world traces

from workloads and renewable power generation are used

in our extensive experiments to show the efficiency of

Smoother. Evaluation results demonstrate that Smoother

significantly reduces the negative impact of renewable power

fluctuations on systems, and improves the utilization of

renewable power by 169.85% on average.

The rest of this paper is organized as follows. In Sec-

tion II, we present the background of cluster energy man-

agement. In Section III, we present Smoother design. The

experimental results are shown in Section IV. Section V

shows the related work. Finally, we conclude this paper in

Section VI.

II. BACKGROUND

In this Section, we present the backgrounds of power

systems. First, we give a brief description of systems’

power infrastructure and consumption, and then discuss the

characteristics of renewable energy supply in systems.

A. Power Infrastructure and Consumption in Systems

As energy consumers, systems require power infrastruc-

ture to generate and distribute power. In general, there is a

micro power grid that integrates all power supplies, such as

the electric grid, diesel generator and renewable energy gen-

erators. In order to guarantee the availability, systems need

to rely on brown energy resources, including the grid and

diesel powers. However, when there are sufficient renewable

sources, it is more sustainable to first consider to leverage

renewable energy, rather than the grid or diesel generators,

to save energy consumption. Although the renewable power

is superior to brown power, some disadvantages, like time-

variant and non-dispatchable, need to be considered for

optimization.

An accurate and useful linear power model is widely used

to estimate servers’ power consumption [2]:

Pserver(μ) = pidle + (pfull − pidle) ∗ μ (1)

where pidle and pfull are the powers used by all machines

at idle and fully utilized states, respectively. μ is the average

CPU utilization of all machines.

B. Wind Energy Source

Wind resource characteristics and turbine properties be-

come the main factors to evaluate the quantity of power

generated from wind energy sources [21]. There are two fea-

tures about wind power [22]. First, the power converted from

the wind resource is a fraction, which largely depends on

the wind speed variance and is defined as power coefficient.

Second, different types of wind turbines have different power

coefficient curves due to different cut-in speeds and/or rated

output power/speeds. Thus, the output power Pwind(ν) of a

turbine type, with respect to wind speed ν, can be expressed

by a piecewise function:

Pwind(ν) =

⎧⎪⎪⎨
⎪⎪⎩

0 ν ≤ V in

G(ν) V in < ν ≤ V rate

P rate V rate < ν ≤ V out

0 ν > V out

(2)

where V in and V out are the cut-in and cut-out speeds,

respectively. V rate is the rated speed, P rate is the rated



Figure 1. Differentiated regions in wind power trace.

power, and G(ν) is defined as the power curve between the

cut-in and rated speeds.

The optimal wind power generation scheme [21] tries to

leverage multiple curve fitting methods for G(ν). Compared

with polynomial regression and exponential fitting, Gaussian

Regression performs the simulation of the relations between

power coefficient and wind speed, i.e.,

G(ν) = a1e
− (ν−b1)2

c21 + ...+ ane
− (ν−bn)2

c2n 1 ≤ n ≤ 5 (3)

where ai, bi and ci are parameters to be fitted according to

the real-world turbine type.

III. THE DESIGN OF SMOOTHER

A. Design Goals

In order to address the problems of high fluctuation and

low power utilization of renewable power, this paper has two

design goals:

1) Alleviate fluctuation in renewable energy supply, there-

by mitigating the impact of renewable power fluctuation on

the stability and safety of both grid and systems as well as

reducing the overhead of energy switching in systems (e.g.,

the overhead of virtual machine migration between grid-

powered clusters and renewable-energy-powered clusters).

2) Improve the utilization of renewable power by alleviat-

ing the imbalance between supply and demand, making full

use of renewable power in systems.

The idea behind Smoother middleware is to alleviate

frequent fluctuation of renewable power and improve the

utilization of renewable power. Specifically, we divide the

renewable power supply into three regions and put forward

the corresponding processing schemes for different regions.

Smoother middleware consists of two main components,

including Flexible Smoothing (FS) and Active Delay (AD).

Flexible Smoothing (FS) in Smoother provides a relatively

stable renewable power supply by using energy storage

devices, thus offering the smoothing effect. Active Delay

(AD) in Smoother matches the deferrable workloads with

renewable power generation and thus improve the utilization

of renewable power.

B. Three Regions in Power Generation

Fig. 1 shows a real-world example of wind power trace,

which comes from National Renewable Energy Laboratory

(NREL) [23]. Based on the degree of wind power fluctua-

tion, we divide wind power trace into three regions.

In Region-I, compared with other regions, the wind power

supply is relatively stable and unnecessary to be processed

by Flexible Smoothing in Smoother. Specifically, Region-I

consists of two situations of wind power generation accord-

ing to Equation (2): 1) Wind power is nearly unavailable

when the wind speed is less than the cut-in speed or larger

than the cut-out speed. 2) The wind power is stable at the

designated rated power of wind turbines when the wind

speed is between the rated speed and the cut-out speed.

In Region-II, the frequent fluctuation of wind power often

results in the instability of power supplies in systems, as

discussed in Section I. We hence consider how to decrease

the degree of wind power fluctuation during this region. In

order to obtain a suitable trade-off between the smoothing ef-

fect and the required maximum rate of charging/discharging

battery (and the resulting battery capacity), we further divide

Region-II into two sub-regions, i.e., Region-II-1 and Region-

II-2, based on the degree of wind power fluctuation.

In Region-II-1, the fluctuation of renewable power is

relatively moderate compared with that in Region-II-2. It

is hence feasible to use the UPS battery to complement this

fluctuation. We adopt Flexible Smoothing in Smoother to

provide a relatively stable supply of renewable energy, as

described in Section III-C.

In Region-II-2, renewable power fluctuates too frequently.

In order to alleviate the fluctuations, Region-II-2 needs to

carry out much higher battery charging/discharging rate and

battery capacity than other regions. Considering the trade-

off between the smoothing effect and the required maxi-

mum rate of charging/discharging battery (and the resulting

battery capacity), we do not execute Flexible Smoothing

in Smoother in Region-II-2. In practical applications, we

set the proportion of Region-II-2 to 0.05%–5% of the

total regions of wind power trace according to the actual

situation. Active Delay in Smoother in Section III-D is used

to address the mismatch between the smoothed renewable

power and workload demand, thus increasing the utilization

of renewable power.

As shown in Section II-B, the power generated by the

wind generator varies with wind speeds. Equations (2) and

(3) calculate the electricity converted from wind resource,

which is tightly correlated with the wind speed and the prop-

erties of wind turbines. Optimal Harvesting Wind Power [21]

introduces the concept of the capacity factor, which is the

ratio of the actual output power P (t) to the rated output

power P rate. The higher the capacity factor is, the more

electricity is actually generated. In this paper, we use the

capacity factor variance σ2
wind during an interval [0, T ] to

represent the fluctuation of wind power supply. We calculate
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Figure 2. The cumulative distribution function of capacity factor variance
in May 2011, California [23].

the capacity factor variance σ2
wind:

σ2
wind =

1

T

T∑
t=0

(
Pwind(νt)

P rate
− μcf )

2 (4)

where μcf is the average capacity factor during an interval

[0, T ]:

μcf =
1

T

T∑
t=0

Pwind(νt)

P rate
(5)

We distinguish different regions by defining the thresholds

of the variance of capacity factors. A specific threshold

can be determined via the supply history of wind energy

and the required maximum rate of charging/discharging

battery. As shown in Fig. 5, the required maximum rate

of charging/discharging battery (and the resulting battery

capacity) grows rapidly when the CDF of the variance

increases, which is used to distinguish Region-II-1 and

Region-II-2. Since there is “switching times” in Fig. 5, we

introduce the concept of “energy switching times”, which is

interpreted as the virtual machine migration times between

grid-powered clusters and renewable-energy-powered clus-

ters, like iSwitch [17]. Frequent fluctuations of renewable

energy usually mean frequent load migration, which increas-

es operation overheads. Thus we use the metric “energy

switching times” in the power supply between the grid

and wind power to represent the impact of wind power

fluctuation on systems. For the difference between Region-

II-1 and Region-I, a smaller probability of Region-I means a

larger number of charging/discharging operations in Flexible

Smoothing. However, frequent charging and discharging

operations exacerbate battery lifetime and increase energy

loss [24]. Therefore, in a real-world system, we need to trade

off the battery consumption and energy switching overhead.

C. Flexible Smoothing in Smoother

The main idea of Flexible Smoothing is to alleviate

the frequent fluctuation of renewable power in Region-

II-1 and achieve a relatively stable supply of renewable

energy to systems. Fig. 3 shows the ideal results of Flexible

Smoothing. Raw power represents the original renewable

power. Ideal power represents the renewable power with

Flexible Smoothing in Smoother that is ultimately supplied
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Figure 3. The case with Flexible Smoothing in Smoother. Raw power
represents the original renewable power. Ideal power represents the
renewable power with Flexible Smoothing in Smoother that is ultimately
supplied to systems.

to systems. In Fig. 3, Flexible Smoothing in Smoother

transfers the renewable power in the orange area to the light

blue area and achieves a stable supply (the dark blue line).

Renewable energy generation can be estimated by Equa-

tions (2) and (3) given meteorological data [21], [25]. On the

other hand, the future generation of renewable energy can

be accurately predicted by machine learning methods [26]–

[29]. For example, LSSVMCGSA model achieves about

5%–10% prediction error within 48 hours [28]. Note that

the prediction mechanism is out of the scope of this paper,

and we leverage a widely-used method to predict renewable

power based on Equations (2) and (3) in Section II-B [21].

At the beginning of each interval (e.g., one hour), Flex-

ible Smoothing in Smoother determines the optimized bat-

tery charging/discharging scheme in the incoming interval.

Through the implementation of the optimized battery charg-

ing/discharging operation, the system can obtain a relatively

smooth and stable renewable energy supply.

Suppose that there are m time points (e.g., m = 12)

in the interval [1,m]. U = [u1u2...um]T represents the

amount of the generated renewable energy at each time point

(e.g., five minutes). S = [s1s2...sm]T represents the battery

charging/discharging amount at each time point. A positive

si indicates that the battery is discharged with the amount of

|si| at time point i, and a negative si indicates the battery is

charged with the amount of |si| at time point i. We use A to

represent the final amount of renewable energy supplied to

the system after the battery charging/discharging operation

at each time point in the interval [1,m]:

A = U + S =

⎡
⎢⎢⎣

a1
a2
...
am

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

u1 + s1
u2 + s2

...
um + sm

⎤
⎥⎥⎦ (6)

We formulate the problem of Flexible Smoothing in

Smoother into the constrained nonlinear programming prob-



lem:

min σA =

√√√√ 1

m

m∑
i=1

(ai − ā)2 (7)

subject to :

∀i ∈ [1,m],

⎧⎨
⎩

0 ≤ |si| ≤ 0.9M, si ≥ 0

0 ≤ |si| ≤ ui, si < 0
(8)

∀i ∈ [1,m], 0.1M ≤ |
i∑

t=1

st| ≤ M (9)

where M is the battery capacity, and ā is the average

value of ai (i ∈ [1,m]). We assume that each time

point is five minutes based on the interval of wind power

information [23], and m is equal to 12 since the decision is

computed each hour. Equation (8) means that at each time

point, the amount of charging battery can not exceed that

of generating renewable energy at that time. The amount

of discharging battery can not exceed 90% of the battery

capacity to avoid the damage of full discharge on the

battery [30]. Equation (9) indicates that the accumulated

electric quantity of the battery can not exceed the battery

capacity or be less than 10% of the battery capacity during

the interval [1,m].
It is worth noting that the rate limits of

charging/discharging battery are implicitly considered

in our model proposed above. In our implementation in

Section IV, the battery capacity is set to sustain one

time point (five minutes) of operations at the maximum

rate of charging/discharging battery, while the decision is

computed each interval (one hour). Actually, the larger

battery capacity (e.g., which can sustain thirty minutes of

operations at the maximum rate of charging/discharging

battery) will yield the better smoothing effect.

Based on the results of Equations (6) – (9), we execute

the battery charging/discharging operations on the UPS

battery. Fig. 4 shows the smoothed wind power versus the

original wind power, where W/ FS means “with Flexible

Smoothing”, which represents the final wind power supply

after performing Flexible Smoothing in Smoother. W/O
FS means “without Flexible Smoothing”, representing the

original output power of wind turbines.

We carry out Flexible Smoothing in Smoother at Region-

II-1, as shown in the red dotted circle in Fig. 4. As

described in Section III-B, considering the trade-off between

the smoothing effect and the battery overhead, we do not

perform Flexible Smoothing in Region-II-2.

In order to illustrate the effects of different thresholds

for distinguishing Region-II-1 and Region-II-2, we examine

a set of data as shown in Fig. 5. W/ Smooth and W/O

Smooth respectively represent the energy switching times

between the grid and wind power in the power supply

of server clusters with and without performing Flexible

Figure 4. The smoothed wind power versus the original wind power.
The region in red dotted circle in Region-II-1 becomes stable after using
Flexible Smoothing in Smoother.

Smoothing in Smoother. Battery MaxVol represents the

required maximum battery charging/discharging rate for

Flexible Smoothing in Smoother. As mentioned above, the

battery capacity is set to sustain one time point (five minutes)

of operations at the maximum battery charging/discharging

rate in our implementation. Therefore, Battery MaxVol

also represents the trend of the required battery capacity.

The CDF values of the capacity factor variance (on the

x-axis) are used to distinguish Region-II-1 and Region-

II-2. For example, when the CDF value is 0.95, which

means region-II-2 accounts for 5% of the total regions,

the corresponding capacity factor variance is 2 ∗ 1011 (as

shown in Fig. 2). We regard this variance value as the

upper boundary of Region-II-1 (also the lower bound of

Region-II-2). The increase of CDF value in Fig. 5 means

that more regions are classified as Region-II-1. Fig. 5 shows

the comparisons between the initial energy switching times

and the energy switching times after executing Flexible

Smoothing in Smoother as well as the required maximum

rate of charging/discharging battery based on different CDF

values. As the CDF value increases, the energy switching

times becomes smaller while the corresponding required

maximum rate of charging/discharging battery (and the

resulting battery capacity) becomes larger. We hence need

to obtain a suitable trade-off between the energy switching

times and the battery capacity. In this paper, we set the ratio

of Region-II-2 to be 5%.

Finally, after performing Flexible Smoothing in Smoother

in Region-II-1, the fluctuation of the renewable energy

supply becomes moderate like Region-I, as shown in Fig. 4.

D. Active Delay in Smoother

The main idea of Active Delay in Smoother is to match the

deferrable workloads with the smoothed renewable power

generation under the condition of meeting the soft-deadline

of deferrable workloads, thus improving the utilization of

renewable power.

Random requests from users often result in the fluctuation

of workload power demands in systems. The fluctuations of

workload power demand and the smoothed renewable power

supply are different and thus possibly lead to the imbalance

between supply and demand, which fails to make full use

of renewable energy in systems. As shown in Fig. 6, the
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Figure 5. The effects of different variance thresholds for distinguishing
Region-II-1 and Region-II-2 on the optimization results and battery
charging/discharging rate requirements. The energy switching times
between the grid and wind power in the power supply of server clusters
are on the left y-axis. The required maximum battery charging/discharging
rate for Flexible Smoothing is on the right y-axis, which also represents
the trend of the required battery capacity. The CDF values of the capacity
factor variance for distinguishing Region-II-1 and Region-II-2 are on the
x-axis.

workload power demand and the renewable power supply

change over time. When the renewable power supply is

larger than the workload power demand as shown in the

green area, the excess renewable energy can not be used by

systems.

Real-time workloads, such as Web access [31], need to

be executed immediately once a request is issued. However,

for the deferrable workloads such as batch jobs, their char-

acteristics provide opportunities to increase the utilization of

the renewable energy. When the renewable power supply is

insufficient, the workloads can be deferred to a future time

slot. In Fig. 7, there are three deferrable jobs, i.e., J1, J2
and J3. The dark grey regions with oblique lines under black

solid line represent the power demand of deferrable jobs.

The transparent regions under black dotted line represent

the power of renewable energy. The light grey regions

with oblique lines represent the overlapping regions of the

renewable power and demands. Fig. 7 (a) shows the original

case without Active Delay in Smoother, where a system

can not use renewable energy to supply J2, leading to a

low utilization of renewable power. Fig. 7 (b) shows the

use of renewable energy for each job via Active Delay in

Smoother, where the renewable power utilization increases

through delaying the execution of J2 to the time with the

most renewable energy use before the soft-deadline (red

dotted line in Fig. 7 (b)).

In many workload schedulers, the deadline and the ex-

pected running time for each job can be provided by users

or be estimated using historical statistics [19]. Therefore, we

assume we get the above information from users or historical

statistics.

We present the details of Active Delay in Smoother

in Algorithm 1. Specifically, the requestJob (line 1) is a

workload request queue which contains the original requests

for each job. The queueJob (line 2) contains the ordered

jobs (requests) that will be scheduled in sequence into
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Figure 6. The imbalance between workload demand and renewable power
supply. The renewable energy in the green area can not be used by systems.
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Figure 7. Active Delay diagram.

the following time. For every small time slot (e.g., one

minute), we first calculate the power quantity that needs to

be consumed by each job in requestJob (line 6). More details

are described in Section II-A. Then, each job is inserted

into the queueJob in the ascending order of its slack-time,

which is defined as deadline minus the sum of running

time and current time (lines 7–8). We schedule each job

in this queue in sequence. For each job in the queueJob,

we determine whether the slack-time of the current job is

larger than 0 (lines 11–12). Slack-time > 0 means that the

current job is a non-real-time job and can be scheduled

into the following time. If so, we compute the amount of

renewable power that the current job will use to facilitate

the execution within the slack-time. Then we choose the

time with the highest renewable energy use as the real

execution time for the current job (lines 13–17). It is worth

noting that the scheduling of the current job is based on

the scheduling results of previous jobs (i.e.,Active Delay in

Smoother maintains renewable power for previous jobs) in

queueJob, and there are no conflicts of the optimal execution

time among jobs. Line 18 updates the remaining renewable

power after the scheduling (i.e., maintaining resources for

the current job). But if the slack-time of the current job is

not larger than 0, this job needs to be carried out immediately

(lines 19–21).

IV. PERFORMANCE EVALUATION

Smoother middleware consists of Flexible Smoothing

(FS) and Active Delay (AD). Flexible Smoothing in S-

moother is the design focus of this paper, which aims to

alleviate fluctuations of renewable power, thereby reduc-

ing operation overheads of systems (e.g., the overhead of

virtual machine migration between grid-powered clusters



Algorithm 1 Active Delay in Smoother.

Input: System workload requests and the smoothed renew-

able power supply

Output: The execution time of each job and the optimal

use of the grid and renewable power

1: queue<Job> requestJob;

2: priority queue<Job> queueJob;

3: for each small time slot do
4: if requestJob.size() > 0 then
5: for job: requestJob do
6: calWorkloadPower(job);

7: slackTime = job.deadline − job.runTime −
currentTime;

8: queueJob.push(job, slackTime);

9: requestJob.pop();

10: end for
11: for job: queueJob do
12: if job.slackTime > 0 then
13: for time: slackTime do
14: power = getRenewablePowerUsedWhen-

StartAtTime(job, time);

15: end for
16: startTime = getStartTimeOfJobFor-

MaxmizeRenewablePower(job);

17: executeJob(job, startTime);

18: updateRemainRPower(job, startTime);

19: else
20: executeJob(job, currentTime);

21: updateRemainRPower(job, currentTime);

22: end if
23: queueJob.pop();

24: end for
25: end if
26: end for

and renewable-energy-powered clusters). Active Delay in

Smoother improves the utilization of renewable power. We

examine the performance of Smoother in terms of multiple

metrics, including energy switching times between the grid

and renewable power in the power supply via real-world

workloads and renewable power traces, which represent

the impact of renewable power fluctuation on systems, and

renewable energy utilization.

A. Experimental Setup

System Configurations: We assume that a system is

equipped with 11, 000 servers and each server has the same

processing power [2], i.e., identical energy consumption for

executing the same jobs. The peak power of each server is

186W and the idle power is 62W [17]. Each server runs

the same workloads and has similar CPU utilization, like

existing experimental configurations [17].

Figure 8. Power consumption of Google cluster.

Workload Traces: Our evaluation uses three typical real-

world workloads, including Google cluster-data [32], Web

workloads [31] and batch workloads [33]. Specifically,

Google trace provides real-world power consumption from

a 12, 500-machine cell over about a month-long period in

May 2011 [32]. According to Equation (1) in Section II,

we convert the CPU utilization into power trace, as shown

in Fig. 8. The time-sensitive Web workloads are collected

from the real-world logs provided by the Internet Traffic

Archive [31]. We generate the number of requests per minute

from the request logs and convert this number into CPU

utilization via a linear analog [17], which sets the utilization

as 100% when the request rate is the maximum and 0%

when the request rate is the minimum. As shown in Table I,

we select five Web workload traces with different average

CPU utilizations during one week. The third workloads are

batch workloads. The logs of Real Parallel Workloads from

Production Systems [33] provide system information, such

as average CPU utilization, work arrival time, execution

time, deadline and the number of the required servers.

For each job, the energy consumption requirements can be

calculated by the CPU utilization, the number of servers

used, etc. In our simulation, we choose four batch workload

traces with different CPU utilizations as shown in Table II.

Table I
FIVE WEB WORKLOAD TRACES WITH DIFFERENT AVERAGE CPU

UTILIZATIONS [31].

Web Description
Avg. CPU
utilization

Calgary CS departmental Web server 3.63%

U of S University Web server 7.21%

NASA Kennedy Space Center Web server 28.89%

Clark ClarkNet Web server 35.78%

UCB UC Berkeley IP Web server 46.04%

Table II
BATCH WORKLOAD TRACES WITH DIFFERENT CPU UTILIZATIONS [33].

Batch Workload Traces Avg. CPU utilization

LLNL Thunder 86.7%

LANL CM5 74.4%

HPC2N 60.1%

Sandia Ross 49.9%



Renewable Power Traces: Wind power traces come from

Wind Data Resources [34] of the National Renewable

Energy Laboratory (NREL). We select two groups of traces

which are differentiated by volatility intensity, including

low and high volatility traces. The low volatility traces

have relatively stable and smooth generation, while the

high volatility traces have output rate with high volatility.

Table III shows the two groups of traces and each group

has three traces with different capacity factors.

Table III
WIND POWER TRACES WITH DIFFERENT VOLATILITY INTENSITIES [34].

Wind Power Traces Site ID Capacity Factor

Low volatility
CA(9122) 17.9%

OR((24258) 19.0%
WA(29359) 17.9%

High volatility
TX(10) 32.4%

CO(11005) 29.9%
WY(16419) 29.6%

B. Results and Analysis

We use energy switching times between the grid and wind

power in the power supply of server clusters to represent

the impact of renewable energy fluctuations on a system.

Smoother is compared with the efficient battery storage

solution where the system first uses renewable power as

much as possible without the battery, and then the battery

stores the remaining renewable power and discharges when

the renewable power is insufficient. This battery storage

solution is efficient and adopted by many works such as

Multigreen [13]. We use Comp to represent the efficient

battery storage solution. W/ means “with”, and W/O means

“without”.

1) Evaluation of Flexible Smoothing in Smoother: We

present the performance evaluation of Flexible Smoothing

in Smoother via the metric of energy switching times.

As described in Section III-C, we set 2 ∗ 1011 whose

corresponding CDF value is 0.95 as the threshold of capacity

factor variance to distinguish Region-II-1 and Region-II-2.

We execute Flexible Smoothing in Region-II-1. Flexible S-

moothing in Smoother is able to achieve a smooth and stable

renewable energy supply by pre-calculating the optimized

charge/discharge strategy of the battery.

In Fig. 9, we obtain four-day wind power with different

fluctuation degrees on May 2, 14, 18 and 23, 2011, Califor-

nia, USA [23], and compare the energy switching times after

carrying out Flexible Smoothing (FS) with the initial energy

switching times within four days. From Fig. 9(a), we observe

that wind power fluctuates most frequently on May 18, and

becomes smooth on May 2. Therefore, by using Flexible

Smoothing, the energy switching times significantly decrease

on May 18, but the decrease degree becomes smaller on May

2, as shown in Fig. 9(b). The main reason is that Flexible
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(a) Wind power traces on May 2, 14, 18 and 23, 2011, California, USA [23].
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(b) Energy switching times on May 2, 14, 18 and 23.

Figure 9. The comparison of energy switching times with different wind
fluctuation degrees between “W/O FS” scheme and “W/ FS” scheme.

Smoothing in Smoother aims to alleviate the fluctuation

degree of renewable power. Hence if the wind power is

stable, Flexible Smoothing plays the less important role.

In the similar way, we use five Web workload traces in

Table I and two groups of wind power traces in Table III

respectively for comparisons in terms of energy switching

times. When the total installed wind turbine capacity is set to

976KW, the results are shown in Fig. 10 and Fig. 11. When

the total installed wind turbine capacity is set to 1525KW,

the results are shown in Fig. 12 and Fig. 13.

We observe that with different workload and renewable

power traces, Flexible Smoothing in Smoother can effec-

tively reduce the energy switching times compared with the

general battery storage solution, thus significantly reducing

the negative impact of renewable power fluctuation on

systems. Fig. 11 and Fig. 13 also demonstrate that Flexible

Smoothing in Smoother brings more remarkable effect when

processing renewable traces with high volatility.

2) Evaluation of Active Delay in Smoother: Flexible

Smoothing in Smoother aims to alleviate fluctuations of

renewable power, while Active Delay in Smoother aims to

improve the utilization of renewable power. We examine the

performance of Active Delay in Smoother in the metric of

renewable power utilization.

Fig. 14 and Fig. 15 show the use of renewable energy

when being equipped with sufficient renewable power and

insufficient renewable power, respectively. The blue area

represents the amount of renewable power supply, the green

line indicates initial power consumption of workload, and

the red line indicates the adjusted power consumption of

workload when Active Delay in Smoother is used. We

observe whether the renewable power is sufficient or not,
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Figure 10. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different workloads (The rated output
power of wind energy is 976KW).
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Figure 11. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different wind power traces (The rated
output power of wind energy is 976KW).

Active Delay in Smoother makes full use of renewable

power.

Table II shows batch workload traces with different CPU

utilizations. As shown in Fig. 16, with different workloads

under different renewable energy supplies, the utilization of

renewable power increases by an average of 169.85% by

using Active Delay in Smoother. All the workloads increase

the utilization of renewable power after performing Active

Delay in Smoother. Especially in the case of HPC2N with

a low supply of renewable energy, the utilization increases

significantly from 0.19 to 0.81. When the renewable power

is sufficient, the supply of renewable power is larger than

the total energy required for the workload. Therefore, the

utilization of renewable power is low relatively. However, it

does not mean Active Delay in Smoother is more suitable

for low supply of renewable power. In fact, Active Delay in

Smoother can be used for each case. We argue that Active

Delay in Smoother can significantly improve the utilization

of renewable energy, and reduce the use of brown energy,

thus decreasing the electricity costs of systems and carbon

emissions.

We also compare energy switching times between “W/O

FS and W/ AD” and “W/ FS and W/ AD ” schemes.

As shown in Fig. 17, the “W/ FS and W/ AD” scheme

significantly reduces the energy switching times by more

than 25%, thus mitigating the negative impact of renewable

energy fluctuations on systems.

In summary, by using Flexible Smoothing and Active
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Figure 12. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different workloads (The rated output
power of wind energy is 1525KW).
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Figure 13. The comparison of energy switching times between “W/ Comp”
scheme and “W/ FS” scheme with different wind power traces (The rated
output power of wind energy is 1525KW).

Delay, our proposed Smoother significantly reduces the neg-

ative impact of renewable power fluctuation on systems and

increases the utilization of renewable power, thus improving

the stability of the grid and systems and reducing the cost

of systems.

V. RELATED WORK

In order to meet the energy needs of systems, existing

schemes have been proposed by exploiting the economical

and environment-friendly renewable powers in terms of

leveraging energy storage devices and workload scheduling.

Energy Storage: Existing schemes generally leverage

energy storage devices to reduce electricity costs [13], [18],

[35], mitigate peak power [36], minimize the amount of user

information leaked to the grid [37], [38] and eliminate the

fluctuation of renewable energy [18]. The optimal control

of end-user energy storage [35] stores energy at much lower

prices in a battery that discharges when the energy prices are

high to satisfy the demand for cost savings. Multigreen [13]

proposes a cost-minimizing control algorithm to determine

the amount of energy drawn from a long-term grid market,

a real-time grid market and energy storage devices which

store excess renewable power. The cost minimizing online

algorithms [18] store all the wind energy of a wind farm into

batteries to eliminate the fluctuation of renewable power.

However, storing all the wind energy needs a large battery

capacity. In order to address the problem of peak power,

EBuff [36] proposes a peak reduction algorithm leveraging
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Figure 14. The case with sufficient renewable power.
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Figure 15. The case with insufficient renewable power.

energy storage. There also exist schemes to minimize the

fluctuation for the demand with energy storage for privacy

issues [37], [38]. Unlike them, the design goal of Smoother

is to alleviate the fluctuation in renewable energy supply.

Renewable Energy Generation: Optimal Harvesting

Wind Power [21] shows the computation of estimating

the wind energy generation with meteorological data.

Study of Forecasting Renewable Energies [39] proposes a

methodology based on linear predictive coding and digital

image processing principles to estimate both wind speed

and solar radiation. Wind Profile Prediction [40] leverages

the Mc-FCRBF network for predicting the wind speed and

wind direction. On the other hand, the future generation of

renewable energy can be accurately predicted by machine

learning methods [26]–[29]. For example, LSSVMCGSA

model achieves about 5%–10% prediction error within 48
hours [28]. Note that the prediction mechanism is out of the

scope of this paper, and the above prediction methods can

be integrated into our system. In this paper, we leverage a

widely-used method to predict renewable power based on

Equations (2) and (3) in Section II-B [21].

Workload Scheduling: In order to address the problem of

the mismatch between system workloads and green energy

supplies, existing workload scheduling schemes have been

proposed [4], [19], [20]. Their basic idea is to postpone

the deferrable workloads until the renewable power is

sufficient or the electricity price is low before the soft-

deadline of workloads. In addition, some schemes leverage

geographical load balancing among distributed systems to
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Figure 16. The comparison of renewable power utilization between “W/
FS and W/O AD” scheme and “W/ FS and W/ AD” scheme with different
workloads and renewable power traces.
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Figure 17. The comparison of energy switching times between “W/O
FS and W/ AD” scheme and “W/ FS and W/ AD” scheme with different
workloads and renewable power traces.

improve the utilization of renewable power [14]. However,

these algorithms fail to consider the impact of renewable

power fluctuation on the stability of the grid and systems.

VI. CONCLUSION

It is an important problem of providing a smooth and

stable supply of renewable power and improving the uti-

lization of renewable power in systems. In order to ad-

dress the two problems, we propose a smooth renewable

power-aware middleware, called Smoother, which consists

of Flexible Smoothing (FS) and Active Delay (AD). The

novelty behind Smoother middleware is that we emphasize

the impact of frequent fluctuation of renewable power on

the stability of the grid and systems, as well as improve the

utilization of renewable power. The trace-driven evaluation

demonstrates that our proposed Smoother middleware offers

a smooth and stable supply of renewable power for systems,

and improves the utilization of renewable power by an

average of 169.85%. Smoother is able to improve system

performance and the stability of the grid and systems,

while meantime reducing the costs of systems. We have

released the source code of Smoother for public use at

https://github.com/csXinxinLiu/Smoother.
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