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Abstract—Coalescing RDMA and Persistent Memory (PM)
delivers high end-to-end performance for networked storage
systems, which requires rethinking the design of efficient hash
structures. In general, existing hashing schemes separately opti-
mize RDMA and PM, thus partially addressing the problems of
RDMA Access Amplification and High-Overhead PM Consistency.
In order to address these problems, we propose a continuity
hashing, which is a “one-stone-two-birds” design to optimize
both RDMA and PM. The continuity hashing leverages a fine-
grained contiguous shared region, called SBuckets, to provide
standby positions for the neighbouring two buckets in case of
hash collisions. In the continuity hashing, remote read only needs
a single RDMA read to directly fetch the home bucket and
the neighbouring SBuckets, which contain all the positions of
maintaining a key-value item, thus alleviating RDMA access am-
plification. Continuity hashing further leverages indicators that
can be atomically modified to support log-free PM consistency
for all the write operations. Evaluation results demonstrate that
compared with state-of-the-art techniques, continuity hashing
achieves high throughput, low latency and the smallest number
of PM writes with acceptable load factors.

I. INTRODUCTION

High-speed networks and efficient persistent storage con-
tribute to the high performance of cloud applications. There-
fore, many schemes coalesce RDMA (remote direct memory
access) and PMs (persistent memories) to deliver high perfor-
mance [1f], [2]. The coalesced RDMA and PM require rethink-
ing the design of hash-based index structures. However, apply-
ing hashing schemes to RDMA and PM environments needs to
address two main challenges: RDMA Access Amplification.
RDMA is well-known for one-sided operations (e.g., read,
write and atomic operations), which can bypass remote CPUs
and provide better performance than two-sided operations
over RC (reliable connection) mode [3[]. However, a single
one-sided RDMA operation only reads/writes one contiguous
memory region. Therefore, accessing non-contiguous remote
memory requires multiple one-sided RDMA round-trips. We
refer to this problem as RDMA Access Amplification. High-
Overhead PM Consistency. Due to the existence of volatile
parts in PM-based systems (e.g., the CPU caches), in order to
ensure crash consistency in case of a system failure, updating
data larger than the 8-byte atomic write unit usually requires
undo/redo logging or copy-on-write (COW) [2], [4]]. How-
ever, double write operations in these mechanisms consume
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the limited endurance of PM. Moreover, guaranteeing write
ordering typically needs the aid of flush/fence instructions,
thus resulting in high system performance overheads.

Existing hashing schemes separately optimize RDMA or
PM, and partially address the above challenges. Specifically,
RDMA-friendly hashing schemes are usually designed to
address the problem of RDMA access amplification |[3],
[Sl. However, these RDMA-friendly hashing schemes fail to
mitigate High-Overhead PM Consistency. For PM-friendly
hashing schemes, many works have been proposed to guar-
antee crash consistency and optimize PM writes [4]], [6], [7].
However, these PM-friendly hashing schemes typically cause
RDMA Access Amplification due to indirect layers [4]] or non-
contiguous standby positions [6].

Unlike existing hashing schemes, we propose a coalescing
hashing solution for both RDMA and PM, called continuity
hashing, which mitigates RDMA access amplification and PM
writes, as well as guaranteeing PM crash consistency. In the
continuity hashing, two buckets with adjacent bucket numbers
share a contiguous memory region between them, called
shared buckets (SBuckets). These SBuckets provide standby
positions for the neighbouring two buckets in case of hash
collisions. A bucket and the neighbouring SBuckets build a
segment, which contains all the potential positions of a specific
KV item. Therefore, to read a requested record, clients only
need a single RDMA read to directly fetch the corresponding
segment, thus reducing the potential multiple RDMA round-
trips. Write requests are handled by the server in order to sim-
plify read-write competition and ensure consistency with low
overheads. We use an indicator in the SBuckets for each two
overlapping segments to indicate whether each slot in the two
segments contains a consistent KV item. An indicator can be
modified with an 8-byte atomic write, thus supporting log-free
consistency guarantee on PM. Evaluation results demonstrate
that compared with the PM-friendly level hashing [6] and
the RDMA-friendly P-FaRM-KV [5]], our continuity hashing
achieves the highest throughputs (i.e., 1.45X — 2.43X). For
latencies, the continuity hashing has better search performance
than P-FaRM-KV, and significantly outperforms the level
hashing by an average of 2.19.X. The continuity hashing also
has better write performance than level hashing, and further
achieves a 1.99X improvement on average compared with
P-FaRM-KV. Continuity hashing also achieves the smallest
number of PM writes with acceptable load factors.
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Fig. 1: Continuity hashing index structure.
II. THE DESIGN OF CONTINUITY HASHING

Continuity hash tables have two kinds of hash buckets, i.e.,
the numbered buckets and the unnumbered shared buckets
(SBuckets). Specifically, the numbered buckets are addressable
by a hash function, and two numbered buckets with adja-
cent bucket numbers share a fine-grained contiguous memory
region between them, which consists of several (e.g., 3)
unnumbered SBuckets, as shown in Figure |1} These SBuckets
store conflicting key-value items when the corresponding
home buckets (i.e., the neighbouring two numbered buckets)
are full, playing a similar role of additional storage named
stash. But the differences are that 1) we organize all the
numbered buckets and the SBuckets into a contiguous memory
region, and 2) we adopt a fine-grained shared region between
each two numbered buckets. The design of the contiguous
memory region for hash collisions comes from the RDMA
property that each one-sided RDMA operation can only access
one contiguous memory region. Therefore, all the potential
positions of a specific KV item are in a small contiguous
memory region, which can be fetched with a single one-sided
RDMA operation, thus reducing potential multiple RDMA
round-trips. The fine-grained shared region is designed as a
suitable trade-off between the high space utilization of the
hash table and the small size of the data retrieved via one-
sided RDMA. The number of SBuckets in the fine-grained
shared regions can be flexibly configured each time resizing
occurs. We enable each bucket to contain multiple slots like
existing schemes [4], [6].

As the basic unit of a one-sided RDMA read operation from
clients, a segment is interpreted as a numbered bucket and the
neighbouring several SBuckets. Each two segments overlap
on the SBuckets. For the convenience of description, we call
each two overlapping segments a segment pair. We use an
indicator for each segment pair to indicate whether each slot in
the two segments contains valid data. Specifically, the number
of bits per indicator is the slot number in the corresponding
segment pair, and each indicator is stored at the beginning of
the corresponding SBuckets. Therefore, when a client issues an
RDMA read to fetch a segment, the corresponding indicator
indicates the slots with the valid data, without the need for
another network round-trip. For the example in Figure |1} a
20-bit indicator for a segment pair is sufficient, which can be
modified with an 8-byte atomic write.

The communications between the server and clients leverage
the fast RDMA networking. For the procedure of remote reads
from clients to the server, we explore the advantages of one-

sided RDMA operations that do not involve remote server’s
CPU and have higher bandwidth and lower latency than two-
sided RDMA operations [3]], [5]. Clients compute the remote
location of a requested key based on its hash value:

Bucket_Number = hash(k)%N (1)

where hash(k) is the hash value, and N is the total number of
the numbered buckets. A one-sided RDMA read can access at
most 1GB contiguous memory region. In order to reduce the
number of network round-trips, clients only use one RDMA
read to directly obtain the corresponding segment, which
contains all the potential locations of the requested KV item
in the continuity hash table. If the computed bucket number
is even (e.g., bucket By), the offset of the segment to be read
remotely (e.g., segment Sy) is:

Ofs = hash(k)%N/2 x (sizese + sizep,) (2)

If the computed bucket number is odd (e.g., bucket Bj), the
offset of the segment to be read (e.g., segment S) is:

Ofs = (hash(k)%N —1)/2%(sizese + sizepy) + sizep, (3)

where sizeg, and sizep, are the segment size and the bucket
size respectively. If the requested key exists, clients will find
the KV item locally with the aid of the indicator. For the
procedure of write requests, we put the burden of handling
write requests on the server, and use server’s CPU to guarantee
persistence, like existing schemes [1]], [2]. Specifically, clients
query the server using RDMA write_with_immediate opera-
tions, which have higher throughput than RDMA send/recv
operations over RC [3]]. After receiving remote write requests,
the server processes these requests and then notifies the clients
that their requests have been completed.

The local writing process of the server provides log-free
failure-atomicity guarantee. Existing hash tables use a 1-bit
token that is associated with a slot to indicate whether the
corresponding slot is empty [6]. We extend this design and
group a set of tokens, called an indicator for each segment
pair. An indicator is able to be updated in the atomic-write
manner and, enables a log-free failure-atomicity guarantee for
all the write operations on PM. Atomic Insertion: The server
computes the home location via Equation (T)), and then checks
each bit of the corresponding indicator to find an empty slot.
After the requested KV item is written to the empty slot,
the server atomically sets the associated bit from 0 to 1.
Even if a system crash occurs during writing the KV pair,
the continuity hash table is still in a consistent state. Because
the associated bit in the indicator has not been changed and
thus the partial write is not visible. Atomic Deletion: After
finding the KV item to be deleted, the server only needs to set
the associated bit in the indicator from 1 to O in the atomic-
write manner, and the KV item will be considered invalid
by subsequent requests. Atomic Update: Continuity hashing
adopts out-of-place update, which is a coalescence of insert
and delete operations. To update a KV pair, the server locates
the requested item, and further attempts to identify an empty



slot in the same segment. Since the old and the new locations
of the requested item are associated with the same indicator,
the server changes the values of the two corresponding bits
in the indicator with an 8-byte atomic write. The update
to the KV pair is invisible until the atomic update in the
indicator is completed, thus ensuring crash consistency. Log-
free Resizing: Resizing requires rehashing existing KV items
into a new hash table. However, unlike the atomic update
operations, the insertion and deletion for a KV pair during
resizing cannot be completed atomically due to the updates to
two different indicators. In fact, the operation sequence (first
insert and then delete an item) ensures that data will not be
lost in the event of a system failure. After restarting the server,
we check the first existing KV item of the old hash table and
perform a delete or rehash operation based on whether it has
been inserted into the new hash table, thus restoring the hash
table to a consistent state.

The continuity hashing aims to mitigate the access am-
plification via one-sided RDMA. In practice, not too high
space utilization is acceptable due to the large capacity and
the low price of the PM products [8]]. But we still provide an
optimization for the space utilization or the load factor (i.e., the
ratio of the number of stored KV items to that of total storage
units) without violating our design goals. We add a new
scheme that dynamically increases the number of SBuckets
for a small percentage of segment pairs before resizing. When
the new SBuckets for a segment pair are added, the server will
return the address and rkey of the added SBuckets region to the
connected clients. Clients can locally know whether a segment
pair has added SBuckets. Specifically, each segment pair will
have at most one SBucket group added before resizing, and
we empirically set the percentage of segment pairs with added
SBuckets to 1/10 by running different configurations. In this
case, for a uniform read workload, a client needs at most
two RDMA round-trips (one for the segment and the other
for the added SBuckets) with a probability of 10%, and only
one RDMA round trip with a probability of 90%. In addition,
our proposed method still supports log-free consistency for all
write operations on PM. Because the added SBuckets use the
same indicator as the original buckets in the segment pair, and
the indicator is able to be updated with an 8-byte atomic write.

III. PERFORMANCE EVALUATION

Our experiments are performed on two Linux machines,
each of which is equipped with a Mellanox ConnectX-5
Infiniband HCA, two 2.1 GHz Intel Xeon Gold6230R CPUs,
192GB DRAM and two 256GB Optane DIMMs. We generate
our workloads via YCSB. YCSB-A is the update-heavy work-
load. YCSB-B is the read-mostly workload. YCSB-C is the
read-only workload. YCSB-F is the read-modify-write work-
load, and consists of 50% reads and 50% read-modify-writes,
where a record will be read, then modified and written back.
Many schemes report that small-sized KV pairs dominate in
production environment [9]. Therefore, we follow the setting
of level hashing, where the key size is 16bytes, and the value
size does not exceed 15bytes [6].

Our proposed scheme is compared with two state-of-the-art
hashing schemes, i.e., level hashing [[6] and P-FaRM-KV [5],
[7]. Level hashing is a PM-friendly hashing scheme, and we
add RDMA communication procedures to facilitate compar-
isons, i.e., using one-sided RDMA reads for remote read and
RDMA write_with_immediate operations for remote write like
our continuity hashing. FaRM [5]] proposes an RDMA-friendly
hashing scheme (FaRM-KV) for DRAM-based systems. We
convert FaRM-KV into the PM counterpart (P-FaRM-KV)
following the guidance of RECIPE [7]. Note that even if we
change the structure of FaRM-KV and add a bitmap to each
bucket to support consistency within a bucket, FaARM-KV still
needs to use logging when the updates occur across buckets
for consistency guarantee.

Throughput. Figures [2] — [ respectively show the aver-
age throughputs with various workloads. For YCSB-A, the
continuity hashing achieves 1.45X and 2.24X throughput
improvements, compared with level hashing and P-FaRM-
KV. The continuity hashing outperforms the PM-friendly level
hashing, since querying data in the level hashing requires
multiple one-sided RDMA round-trips. Moreover, continuity
hashing also significantly outperforms the RDMA-friendly P-
FaRM-KY, since the P-FaRM-KYV fails to optimize PM writes
and employs the expensive logging to guarantee consistency.
For YCSB-C, we observe that for level hashing, the average
throughput of searches significantly decreases, since for each
search, the level hashing needs to issue multiple RDMA reads
to query the standby positions. Both continuity hashing and
P-FaRM-KYV are optimized for RDMA reads, and each query
only needs nearly one RDMA operation.

Latency. We record the execution time of each individual
operation as latency. Figures [6] and [7] show the average
latencies of two read-dominated workloads. We observe that
compared with level hashing and P-FaRM-KYV, the continuity
hashing reduces the latencies by an average of 61% and 9%.
Figures [5] and [§] show the average latencies of YCSB-A and
YCSB-F, which contain a number of write operations. The
average latency of writes increases with the number of threads
due to locking mechanism. Compared with level hashing and
P-FaRM-KYV, the continuity hashing reduces the latencies by
an average of 34% and 37%. As shown in Figure [9] for
the latencies of PM update operations, our continuity hashing
respectively achieves 1.39X and 2.14 X performance improve-
ments on average, compared with the level hashing and the
P-FaRM-KV. We have optimized the insertion operations of P-
FaRM-KYV to reduce PM writes and latency by replacing the
iteratively displacing KV pairs in the original scheme with
at most one movement. The results further demonstrate our
performance advantages over the two state-of-the-art schemes.

The Number of PM Writes. We evaluate the number of PM
writes by counting the number of flush instructions, as shown
in Table[l] In our continuity hashing, each insertion and update
needs to sequentially write the KV pair in an empty slot and
modify the associated bit in the indicator from 0 to 1, thus
including two PM writes. Furthermore, a deletion operation
only needs one PM write that modifies the associated bit from
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(the read-modify-write workload).

1 to 0. In the level hashing, the number of PM writes for an
insertion or an update is affected by the load factor of hash
table. When the load rate increases, the probability of using
logging to ensure crash consistency will also increase, which
causes more PM write operations. P-FaRM-KV uses logging
for each write operation, which incurs the highest number of
PM writes among the three hashing schemes.

TABLE I: The number of PM writes with different operations.
| | Insertion | Update | Deletion |

Continuity 2 2 1
Level 2-2.01 2-5 1
P-FaRM-KV 5 5 5

Maximum Load Factor. We evaluate the optimization
scheme that dynamically adds SBuckets for a small percentage
of segment pairs to improve load factors. The evaluation uses
YCSB-A workload. In Figure [I0] we evaluate the load factors
of continuity hashing and show the effectiveness of the added
SBuckets in terms of space utilization. The initial hash table
contains 20 buckets (i.e., 80 slots). Each resizing expands
the hash table to twice the current capacity. We observe that
as the number of resizing increases, the load factors of our
original solution without added SBuckets gradually decrease.
The optimization schemes with the added Sbuckets for 1/20
and 1/10 segment pairs achieve the load factors of about
70%, which is acceptable due to the large capacity of the
available PM products [8]]. We further evaluate the throughput
of continuity hashing with different optional schemes. The
figure is omitted here due to space limit. The results show
that adding SBuckets for 1/10 and 1/20 segment pairs only
slightly reduces the throughput of YCSB-A by 4% — 5%.

Tlhe numbezrs of clienli and servger threadls6
Fig. 8: The average latency of YCSB-F  Fig. 9: The average latency of the
update-only workload.
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Fig. 10: The load factors of continuity
hashing with different schemes.

IV. CONCLUSION

Designing a high-performance hash structure is important
for memory systems based on coalescing RDMA and PM. In
order to address the problems of RDMA Access Amplification
and High-Overhead PM Consistency, we propose the continu-
ity hashing, a coalescing hashing solution for both RDMA and
PM. The continuity hashing supports efficient remote read via
a single one-sided RDMA operation and log-free consistency
guarantee for all the write operations on PM. The evaluation
demonstrates that our proposed continuity hashing achieves the
high throughput, the low latency as well as the small number
of PM writes, while obtaining acceptable load factors.
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