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Background

» Persistent Memory (PM)
v" Non-volatility
v Byte-addressability
v Large capacity
v" DRAM-scale latency
» Remote Direct Memory Access (RDMA)
v Bypassing kernel
v’ Zero memory copy
v High bandwidth/Low latency
v Well-known for one-sided RDMA (Do not involve remote CPU)
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RDMA+PM: Deliver high end-to-end performance for networked

storage systems.
* Require rethinking the design of efficient hash structures.



Challenges

Designing hashing indexes for RDMA+PM:

» RDMA Access Amplification:
v' Accessing non-contiguous remote memory region
requires multiple one-sided RDMA round-trips.

» High-Overhead PM Consistency:
v' Undo/redo logging and copy-on-write require double
PM writes, consuming the limited endurance of PM.



Existing Solutions

Existing hashing schemes separately optimize RDMA or PM:

» RDMA-friendly hashing schemes:

v Pros: address the problem of RDMA Access Amplification.
v' Cons: fail to mitigate High-Overhead PM Consistency.

» PM-friendly hashing schemes:
v Pros: guarantee crash consistency and optimize PM writes.
v' Cons: cause RDMA Access Amplification due to indirect
layers or non-contiguous standby positions.
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Our Continuity Hashing:
* A "one-stone-two-birds" design to optimize both RDMA and PM.



System Design of Continuity Hashing

> Index Structure
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» Read/Write Operations using RDMA
v' Reads: use one-sided RDMA read
e |If the bucket number is even, the offset to be read (e.g., SO) is:

Ofs = hash(k)%N/2 x (sizese + Sizep,)

|
indicator for segments S, and S; (a pair)

e |If the bucket number is odd, the offset to be read (e.g., S1) is:
Ofs = (hash(k)%N —1)/2% (sizege + Sizep, ) + Sizep,

v' Writes:
Use RDMA write_with_imm operation

Servers handle writes



System Design of Continuity Hashing

» Log-Free Failure-Atomicity Guarantee
v An indicator:

e Indicate whether each slot in the segment pair contains valid data.
e Can be updated in the atomic-write manner.
e Support atomic insertion/deletion/update & log-free resizing.
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» Log-Free Failure-Atomicity Guarantee
v An indicator:

e Indicate whether each slot in the segment pair contains valid data.
e Can be updated in the atomic-write manner.
e Support atomic insertion/deletion/update & log-free resizing.
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» Optimizing Space Utilization
v Dynamically increase the number of SBuckets for 1/10 segment pairs
before resizing.

v' Still support log-free consistency for all the PM writes.
e The added SBuckets use the same indicator as the original buckets,

which can be updated with an atomic write. 10



Evaluation

>

The throughput of the update-heavy workload.

>

The latency of the update-heavy workload.

>
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The number of PM writes.
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Conclusion

» Challenges of designing hashing indexes for RDMA+PM:
v' RDMA Access Amplification
v' High-Overhead PM Consistency

» Our Continuity Hashing:
v’ Coalescing design for RDMA and PM.
v’ Efficient remote read without access amplification.
v’ Log-free consistency guarantee for all the PM writes.

» Compared with state-of-the-art schemes, continuity hashing achieves high
throughput (1.45X — 2.43X), low latency (about 1.7X speedup) and the
smallest number of PM writes, while obtaining acceptable load factors.
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