Paper ID: 273

Consistent RDMA-Friendly Hashing on
Remote Persistent Memory

Xinxin Liu, Yu Hua, Rong Bai

Huazhong University of Science and Technology

ICCD 2021

Background

» Persistent Memory (PM)
v" Non-volatility
v Byte-addressability
v Large capacity
v" DRAM-scale latency
» Remote Direct Memory Access (RDMA)
v Bypassing kernel
v’ Zero memory copy
v High bandwidth/Low latency
v Well-known for one-sided RDMA (Do not involve remote CPU)

Background

» Persistent Memory (PM)
v" Non-volatility
v Byte-addressability
v Large capacity
v" DRAM-scale latency
» Remote Direct Memory Access (RDMA)
v Bypassing kernel
v’ Zero memory copy
v High bandwidth/Low latency
v Well-known for one-sided RDMA (Do not involve remote CPU)

RDMA+PM: Deliver high end-to-end performance for networked

storage systems.
* Require rethinking the design of efficient hash structures.

Challenges

Designing hashing indexes for RDMA+PM:

» RDMA Access Amplification:
v' Accessing non-contiguous remote memory region
requires multiple one-sided RDMA round-trips.

» High-Overhead PM Consistency:
v' Undo/redo logging and copy-on-write require double
PM writes, consuming the limited endurance of PM.

Existing Solutions

Existing hashing schemes separately optimize RDMA or PM:

» RDMA-friendly hashing schemes:

v Pros: address the problem of RDMA Access Amplification.
v' Cons: fail to mitigate High-Overhead PM Consistency.

» PM-friendly hashing schemes:
v Pros: guarantee crash consistency and optimize PM writes.
v' Cons: cause RDMA Access Amplification due to indirect
layers or non-contiguous standby positions.

Existing Solutions

Existing hashing schemes separately optimize RDMA or PM:

» RDMA-friendly hashing schemes:

v Pros: address the problem of RDMA Access Amplification.
v' Cons: fail to mitigate High-Overhead PM Consistency.

» PM-friendly hashing schemes:
v Pros: guarantee crash consistency and optimize PM writes.
v' Cons: cause RDMA Access Amplification due to indirect
layers or non-contiguous standby positions.

Our Continuity Hashing:
* A "one-stone-two-birds" design to optimize both RDMA and PM.

System Design of Continuity Hashing

> Index Structure

Hash(x) Hash(y)
segment Sg segment S, v segment S, segment S3
bucket B, SBuckets bucket B, bucket B, SBuckets bucket B;
S:!S:S:S
| | | |
[o] o] [o] o]
t t t t
0 1 2 3

| |
indicator for segments Sp and S; (a pair) indicator for segments S, and S; (a pair)

System Design of Continuity Hashing

> Index Structure

Hash(x) Hash(y)
segment Sg segment S,

bucket B,

SBuckets bucket B,

bucket B,

segment S,

SBuckets

segment S3

bucket B;

SiS
| |

t t
0:1

S
|

t
2

S
|

t
3

|
indicator for segments Sp and S; (a pair)

» Read/Write Operations using RDMA
v' Reads: use one-sided RDMA read
e |If the bucket number is even, the offset to be read (e.g., SO) is:

Ofs = hash(k)%N/2 x (sizese + Sizep,)

|
indicator for segments S, and S; (a pair)

e |If the bucket number is odd, the offset to be read (e.g., S1) is:
Ofs = (hash(k)%N —1)/2% (sizege + Sizep,) + Sizep,

v' Writes:
Use RDMA write_with_imm operation

Servers handle writes

System Design of Continuity Hashing

» Log-Free Failure-Atomicity Guarantee
v An indicator:

e Indicate whether each slot in the segment pair contains valid data.
e Can be updated in the atomic-write manner.
e Support atomic insertion/deletion/update & log-free resizing.

segment S, segment S,.q

m SBuckets m

|
.|
indicator

System Design of Continuity Hashing

» Log-Free Failure-Atomicity Guarantee
v An indicator:

e Indicate whether each slot in the segment pair contains valid data.
e Can be updated in the atomic-write manner.
e Support atomic insertion/deletion/update & log-free resizing.

segment S, segment S,.q
Metl.%X SBuckets m
|
. CI.I t
Indicator added|SBuckets

» Optimizing Space Utilization
v Dynamically increase the number of SBuckets for 1/10 segment pairs
before resizing.

v' Still support log-free consistency for all the PM writes.
e The added SBuckets use the same indicator as the original buckets,

which can be updated with an atomic write. 10

Evaluation

>

The throughput of the update-heavy workload.

>

The latency of the update-heavy workload.

>

Throughput (Mops/s)
o = N W b [, B e) I N |

16

-
~

2

Latency (us)
w o N

oN B O

1

o
00

e
o

e

Load factor
=

o
N

o

7 Continuity

H Level Z
J P-FaRM-KV g
é
won IH 1
o | | é

The numbers of cI|ent and server threads

Continuity 7

H Level

k\\\\\\\\\\\“

11

O P-FaRM-KV
16
The numbers of cI|ent and server threads

-

——No Added SBuckets
—=—Adding SBuckets for 1/20 Segment Pairs
—e—Adding SBuckets for 1/10 Segment Pairs

10 12 14 16
The number of resizing times

12
10

Throughput (Mops/s)
(=] N - ()] [e]

Continuity
H Level
I P-FaRM-KV

AR

%-n %IH %H I i

8
The numbers of cllent and server threads

The throughput of the read-only workload.

8
7

—_—

Latency (us

5
4
3
2
1
0

The latency of the read-only workload.

7 Continuity M Level £P-FaRM-KV

111

m
\\\\\\\\\\Q

16
The numbers of cllent and server threads

Insertion | Update | Deletion
Continuity 2 2 1
Level 2-2.01 2-5 1
P-FaRM-KV 5 5 5

The number of PM writes.

11

Conclusion

» Challenges of designing hashing indexes for RDMA+PM:
v' RDMA Access Amplification
v' High-Overhead PM Consistency

» Our Continuity Hashing:
v’ Coalescing design for RDMA and PM.
v’ Efficient remote read without access amplification.
v’ Log-free consistency guarantee for all the PM writes.

» Compared with state-of-the-art schemes, continuity hashing achieves high
throughput (1.45X — 2.43X), low latency (about 1.7X speedup) and the
smallest number of PM writes, while obtaining acceptable load factors.

12

Thanks! Q&A

