
Consistent RDMA-Friendly Hashing on
Remote Persistent Memory

Xinxin Liu, Yu Hua, Rong Bai

Huazhong University of Science and Technology

ICCD 2021

Paper ID: 273

Background

 Persistent Memory (PM)
 Non-volatility
 Byte-addressability
 Large capacity
 DRAM-scale latency

 Remote Direct Memory Access (RDMA)
 Bypassing kernel
 Zero memory copy
 High bandwidth/Low latency
 Well-known for one-sided RDMA (Do not involve remote CPU)

2

Background

 Persistent Memory (PM)
 Non-volatility
 Byte-addressability
 Large capacity
 DRAM-scale latency

 Remote Direct Memory Access (RDMA)
 Bypassing kernel
 Zero memory copy
 High bandwidth/Low latency
 Well-known for one-sided RDMA (Do not involve remote CPU)

3

RDMA+PM: Deliver high end-to-end performance for networked
storage systems.

• Require rethinking the design of efficient hash structures.

Challenges

 RDMA Access Amplification:
 Accessing non-contiguous remote memory region

requires multiple one-sided RDMA round-trips.

High-Overhead PM Consistency:
 Undo/redo logging and copy-on-write require double

PM writes, consuming the limited endurance of PM.

4

Designing hashing indexes for RDMA+PM:

Existing Solutions

Existing hashing schemes separately optimize RDMA or PM:

 RDMA-friendly hashing schemes:
 Pros: address the problem of RDMA Access Amplification.
 Cons: fail to mitigate High-Overhead PM Consistency.

 PM-friendly hashing schemes:
 Pros: guarantee crash consistency and optimize PM writes.
 Cons: cause RDMA Access Amplification due to indirect

layers or non-contiguous standby positions.

5

Existing Solutions

Existing hashing schemes separately optimize RDMA or PM:

 RDMA-friendly hashing schemes:
 Pros: address the problem of RDMA Access Amplification.
 Cons: fail to mitigate High-Overhead PM Consistency.

 PM-friendly hashing schemes:
 Pros: guarantee crash consistency and optimize PM writes.
 Cons: cause RDMA Access Amplification due to indirect

layers or non-contiguous standby positions.

6

Our Continuity Hashing:
• A "one-stone-two-birds" design to optimize both RDMA and PM.

System Design of Continuity Hashing

 Index Structure

7

Hash(y)

bucket B0 bucket B1

...

SBuckets bucket B2 bucket B3SBuckets

segment S0 segment S1 segment S2 segment S3

S
l
o
t
0

S
l
o
t
1

S
l
o
t
2

S
l
o
t
3

Hash(x)

indicator for segments S0 and S1 (a pair) indicator for segments S2 and S3 (a pair)

System Design of Continuity Hashing

 Index Structure

 Read/Write Operations using RDMA
 Reads: use one-sided RDMA read
• If the bucket number is even, the offset to be read (e.g., S0) is:

• If the bucket number is odd, the offset to be read (e.g., S1) is:

 Writes:
• Use RDMA write_with_imm operation
• Servers handle writes

8

Hash(y)

bucket B0 bucket B1

...

SBuckets bucket B2 bucket B3SBuckets

segment S0 segment S1 segment S2 segment S3

S
l
o
t
0

S
l
o
t
1

S
l
o
t
2

S
l
o
t
3

Hash(x)

indicator for segments S0 and S1 (a pair) indicator for segments S2 and S3 (a pair)

System Design of Continuity Hashing

 Log-Free Failure-Atomicity Guarantee
 An indicator:

• Indicate whether each slot in the segment pair contains valid data.

• Can be updated in the atomic-write manner.
• Support atomic insertion/deletion/update & log-free resizing.

9

bucket Bx bucket Bx+1SBuckets

segment Sx segment Sx+1

indicator added SBuckets

System Design of Continuity Hashing

 Log-Free Failure-Atomicity Guarantee
 An indicator:

• Indicate whether each slot in the segment pair contains valid data.

• Can be updated in the atomic-write manner.
• Support atomic insertion/deletion/update & log-free resizing.

10

bucket Bx bucket Bx+1SBuckets

segment Sx segment Sx+1

indicator added SBuckets

Optimizing Space Utilization
 Dynamically increase the number of SBuckets for 1/10 segment pairs

before resizing.

 Still support log-free consistency for all the PM writes.
• The added SBuckets use the same indicator as the original buckets,
which can be updated with an atomic write.

 .

 .  .

Evaluation
 .

11

The throughput of the update-heavy workload. The throughput of the read-only workload.

The latency of the update-heavy workload. The latency of the read-only workload.

The number of PM writes.

 Challenges of designing hashing indexes for RDMA+PM:
 RDMA Access Amplification
 High-Overhead PM Consistency

 Our Continuity Hashing:
 Coalescing design for RDMA and PM.
 Efficient remote read without access amplification.
 Log-free consistency guarantee for all the PM writes.

 Compared with state-of-the-art schemes, continuity hashing achieves high
throughput (1.45X – 2.43X), low latency (about 1.7X speedup) and the
smallest number of PM writes, while obtaining acceptable load factors.

12

Conclusion

Thanks! Q&A

13

